瓦瑟斯坦空间和持久图空间的粗嵌入性

Pub Date : 2024-06-26 DOI:10.1007/s00454-024-00674-6
Neil Pritchard, Thomas Weighill
{"title":"瓦瑟斯坦空间和持久图空间的粗嵌入性","authors":"Neil Pritchard, Thomas Weighill","doi":"10.1007/s00454-024-00674-6","DOIUrl":null,"url":null,"abstract":"<p>We prove an equivalence between open questions about the embeddability of the space of persistence diagrams and the space of probability distributions (i.e. Wasserstein space). It is known that for many natural metrics, no coarse embedding of either of these two spaces into Hilbert space exists. Some cases remain open, however. In particular, whether coarse embeddings exist with respect to the <i>p</i>-Wasserstein distance for <span>\\(1\\le p\\le 2\\)</span> remains an open question for the space of persistence diagrams and for Wasserstein space on the plane. In this paper, we show that embeddability for persistence diagrams is equivalent to embeddability for Wasserstein space on <span>\\(\\mathbb {R}^2\\)</span>. When <span>\\(p &gt; 1\\)</span>, Wasserstein space on <span>\\(\\mathbb {R}^2\\)</span> is snowflake universal (an obstruction to embeddability into any Banach space of non-trivial type) if and only if the space of persistence diagrams is snowflake universal.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coarse Embeddability of Wasserstein Space and the Space of Persistence Diagrams\",\"authors\":\"Neil Pritchard, Thomas Weighill\",\"doi\":\"10.1007/s00454-024-00674-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove an equivalence between open questions about the embeddability of the space of persistence diagrams and the space of probability distributions (i.e. Wasserstein space). It is known that for many natural metrics, no coarse embedding of either of these two spaces into Hilbert space exists. Some cases remain open, however. In particular, whether coarse embeddings exist with respect to the <i>p</i>-Wasserstein distance for <span>\\\\(1\\\\le p\\\\le 2\\\\)</span> remains an open question for the space of persistence diagrams and for Wasserstein space on the plane. In this paper, we show that embeddability for persistence diagrams is equivalent to embeddability for Wasserstein space on <span>\\\\(\\\\mathbb {R}^2\\\\)</span>. When <span>\\\\(p &gt; 1\\\\)</span>, Wasserstein space on <span>\\\\(\\\\mathbb {R}^2\\\\)</span> is snowflake universal (an obstruction to embeddability into any Banach space of non-trivial type) if and only if the space of persistence diagrams is snowflake universal.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00674-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00674-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了有关持久图空间和概率分布空间(即瓦瑟斯坦空间)可嵌入性的公开问题之间的等价性。众所周知,对于许多自然度量,这两个空间中的任何一个都不存在对希尔伯特空间的粗嵌入。然而,有些情况仍未解决。特别是,对于持久图空间和平面上的 Wasserstein 空间来说,是否存在关于 \(1\le p\le 2\) 的 p-Wasserstein 距离的粗嵌入仍然是一个悬而未决的问题。在本文中,我们证明了持久图的可嵌入性与(\mathbb {R}^2\ )上的瓦瑟斯坦空间的可嵌入性是等价的。当(p > 1\), Wasserstein space on \(\mathbb {R}^2\) is snowflake universal (an obstruction to embeddability into any Banach space of non-trivial type) if and only if the space of persistence diagrams is snowflake universal.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coarse Embeddability of Wasserstein Space and the Space of Persistence Diagrams

分享
查看原文
Coarse Embeddability of Wasserstein Space and the Space of Persistence Diagrams

We prove an equivalence between open questions about the embeddability of the space of persistence diagrams and the space of probability distributions (i.e. Wasserstein space). It is known that for many natural metrics, no coarse embedding of either of these two spaces into Hilbert space exists. Some cases remain open, however. In particular, whether coarse embeddings exist with respect to the p-Wasserstein distance for \(1\le p\le 2\) remains an open question for the space of persistence diagrams and for Wasserstein space on the plane. In this paper, we show that embeddability for persistence diagrams is equivalent to embeddability for Wasserstein space on \(\mathbb {R}^2\). When \(p > 1\), Wasserstein space on \(\mathbb {R}^2\) is snowflake universal (an obstruction to embeddability into any Banach space of non-trivial type) if and only if the space of persistence diagrams is snowflake universal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信