通过流多边形计算两简约积的细分代数

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Matias von Bell
{"title":"通过流多边形计算两简约积的细分代数","authors":"Matias von Bell","doi":"10.1007/s00454-024-00671-9","DOIUrl":null,"url":null,"abstract":"<p>For a lattice path <span>\\(\\nu \\)</span> from the origin to a point (<i>a</i>, <i>b</i>) using steps <span>\\(E=(1,0)\\)</span> and <span>\\(N=(0,1)\\)</span>, we construct an associated flow polytope <span>\\({\\mathcal {F}}_{{\\widehat{G}}_B(\\nu )}\\)</span> arising from an acyclic graph where bidirectional edges are permitted. We show that the flow polytope <span>\\({\\mathcal {F}}_{{\\widehat{G}}_B(\\nu )}\\)</span> admits a subdivision dual to a <span>\\((w-1)\\)</span>-simplex, where <i>w</i> is the number of valleys in the path <span>\\({\\overline{\\nu }} = E\\nu N\\)</span>. Refinements of this subdivision can be obtained by reductions of a polynomial <span>\\(P_\\nu \\)</span> in a generalization of Mészáros’ subdivision algebra for acyclic root polytopes where negative roots are allowed. Via an integral equivalence between <span>\\({\\mathcal {F}}_{{\\widehat{G}}_B(\\nu )}\\)</span> and the product of simplices <span>\\(\\Delta _a\\times \\Delta _b\\)</span>, we thereby obtain a subdivision algebra for a product of two simplices. As a special case, we give a reduction order for reducing <span>\\(P_\\nu \\)</span> that yields the cyclic <span>\\(\\nu \\)</span>-Tamari complex of Ceballos, Padrol, and Sarmiento.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"63 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Subdivision Algebra for a Product of Two Simplices via Flow Polytopes\",\"authors\":\"Matias von Bell\",\"doi\":\"10.1007/s00454-024-00671-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a lattice path <span>\\\\(\\\\nu \\\\)</span> from the origin to a point (<i>a</i>, <i>b</i>) using steps <span>\\\\(E=(1,0)\\\\)</span> and <span>\\\\(N=(0,1)\\\\)</span>, we construct an associated flow polytope <span>\\\\({\\\\mathcal {F}}_{{\\\\widehat{G}}_B(\\\\nu )}\\\\)</span> arising from an acyclic graph where bidirectional edges are permitted. We show that the flow polytope <span>\\\\({\\\\mathcal {F}}_{{\\\\widehat{G}}_B(\\\\nu )}\\\\)</span> admits a subdivision dual to a <span>\\\\((w-1)\\\\)</span>-simplex, where <i>w</i> is the number of valleys in the path <span>\\\\({\\\\overline{\\\\nu }} = E\\\\nu N\\\\)</span>. Refinements of this subdivision can be obtained by reductions of a polynomial <span>\\\\(P_\\\\nu \\\\)</span> in a generalization of Mészáros’ subdivision algebra for acyclic root polytopes where negative roots are allowed. Via an integral equivalence between <span>\\\\({\\\\mathcal {F}}_{{\\\\widehat{G}}_B(\\\\nu )}\\\\)</span> and the product of simplices <span>\\\\(\\\\Delta _a\\\\times \\\\Delta _b\\\\)</span>, we thereby obtain a subdivision algebra for a product of two simplices. As a special case, we give a reduction order for reducing <span>\\\\(P_\\\\nu \\\\)</span> that yields the cyclic <span>\\\\(\\\\nu \\\\)</span>-Tamari complex of Ceballos, Padrol, and Sarmiento.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00671-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00671-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对于使用步骤 \(E=(1,0)\ 和 \(N=(0,1)\) 从原点到点(a, b)的网格路径 \({\mathcal {F}}_{{\widehat{G}}_B(\nu )}\) ,我们构建了一个由允许双向边的无循环图产生的相关流多面体 \({\mathcal {F}}_{{\widehat{G}}_B(\nu )}\) 。我们证明了流动多面体 \({\mathcal {F}}_{{\widehat{G}}_B(\nu )}\) 允许一个与 \((w-1)\)-simplex 对偶的细分,其中 w 是路径 \({\overline\{nu }} = E\nu N\) 中山谷的数量。这种细分的细化可以通过多项式 \(P_\nu \)在梅萨罗斯的细分代数中的广义化来获得,梅萨罗斯的细分代数适用于允许负根的无环根多面体。通过 \({mathcal {F}}_{{\widehat{G}}_B(\nu )}\) 和单纯形的乘积 \(\Delta _a\times \Delta _b\)之间的积分等价,我们得到了两个单纯形乘积的细分代数。作为一个特例,我们给出了还原 \(P_\nu \)的还原阶,得到了塞瓦略斯(Ceballos)、帕德罗尔(Padrol)和萨米恩托(Sarmiento)的循环 \(\nu \)-塔马里复数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Subdivision Algebra for a Product of Two Simplices via Flow Polytopes

A Subdivision Algebra for a Product of Two Simplices via Flow Polytopes

For a lattice path \(\nu \) from the origin to a point (ab) using steps \(E=(1,0)\) and \(N=(0,1)\), we construct an associated flow polytope \({\mathcal {F}}_{{\widehat{G}}_B(\nu )}\) arising from an acyclic graph where bidirectional edges are permitted. We show that the flow polytope \({\mathcal {F}}_{{\widehat{G}}_B(\nu )}\) admits a subdivision dual to a \((w-1)\)-simplex, where w is the number of valleys in the path \({\overline{\nu }} = E\nu N\). Refinements of this subdivision can be obtained by reductions of a polynomial \(P_\nu \) in a generalization of Mészáros’ subdivision algebra for acyclic root polytopes where negative roots are allowed. Via an integral equivalence between \({\mathcal {F}}_{{\widehat{G}}_B(\nu )}\) and the product of simplices \(\Delta _a\times \Delta _b\), we thereby obtain a subdivision algebra for a product of two simplices. As a special case, we give a reduction order for reducing \(P_\nu \) that yields the cyclic \(\nu \)-Tamari complex of Ceballos, Padrol, and Sarmiento.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信