{"title":"k+l$$ - 莫尔顿构型的正质量","authors":"Naoko Yoshimi","doi":"10.1007/s10569-024-10196-1","DOIUrl":null,"url":null,"abstract":"<p>For given <i>k</i> bodies of collinear central configuration of Newtonian <i>k</i>-body problem, we ask whether one can add other <i>l</i> bodies at the same time on the line without changing the configuration and motion of the initial bodies so that the total <i>k</i> <span>\\(+\\)</span> <i>l</i> bodies provide a central configuration. We call it <i>k+l-Moulton configuration</i>. We find the following. When <i>l</i> < <i>k</i> <span>\\(+\\)</span> 1, there exist only zero-mass solutions, masses of added bodies are all zero that means infinitesimal mass. When <i>l</i> <span>\\(=\\)</span> <i>k</i> <span>\\(+\\)</span> 1, we show the existence of <i>k+l-Moulton configuration</i> where masses are non-negative given as a one parameter family, <span>\\({\\mathbf {m_{B}}}={\\mathbf {m_{B_{0}}}}\\)</span> <i>t</i>, <i>t</i> <span>\\(\\ge \\)</span> 0. Then there exist not only zero-mass but also positive-mass solutions whose masses are all positive. Moreover when <i>l</i> > <i>k</i> <span>\\(+\\)</span> 1, there is not zero-mass solution because one cannot put more than one body in an interval which is separated by initial <i>k</i> bodies. Then maximum number of added bodies is <i>k</i> <span>\\(+\\)</span> 1 at once in zero-mass solutions.</p>","PeriodicalId":72537,"journal":{"name":"Celestial mechanics and dynamical astronomy","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive mass of $$k+l$$ -Moulton configuration\",\"authors\":\"Naoko Yoshimi\",\"doi\":\"10.1007/s10569-024-10196-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For given <i>k</i> bodies of collinear central configuration of Newtonian <i>k</i>-body problem, we ask whether one can add other <i>l</i> bodies at the same time on the line without changing the configuration and motion of the initial bodies so that the total <i>k</i> <span>\\\\(+\\\\)</span> <i>l</i> bodies provide a central configuration. We call it <i>k+l-Moulton configuration</i>. We find the following. When <i>l</i> < <i>k</i> <span>\\\\(+\\\\)</span> 1, there exist only zero-mass solutions, masses of added bodies are all zero that means infinitesimal mass. When <i>l</i> <span>\\\\(=\\\\)</span> <i>k</i> <span>\\\\(+\\\\)</span> 1, we show the existence of <i>k+l-Moulton configuration</i> where masses are non-negative given as a one parameter family, <span>\\\\({\\\\mathbf {m_{B}}}={\\\\mathbf {m_{B_{0}}}}\\\\)</span> <i>t</i>, <i>t</i> <span>\\\\(\\\\ge \\\\)</span> 0. Then there exist not only zero-mass but also positive-mass solutions whose masses are all positive. Moreover when <i>l</i> > <i>k</i> <span>\\\\(+\\\\)</span> 1, there is not zero-mass solution because one cannot put more than one body in an interval which is separated by initial <i>k</i> bodies. Then maximum number of added bodies is <i>k</i> <span>\\\\(+\\\\)</span> 1 at once in zero-mass solutions.</p>\",\"PeriodicalId\":72537,\"journal\":{\"name\":\"Celestial mechanics and dynamical astronomy\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Celestial mechanics and dynamical astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10569-024-10196-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Celestial mechanics and dynamical astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10569-024-10196-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对于牛顿k体问题中给定的k个共线中心构型的天体,我们要问的是,能否在不改变初始天体的构型和运动的情况下,在直线上同时增加其他l个天体,从而使总共k(+\)l个天体提供一个中心构型。我们称之为 k+l-Moulton 构型。我们发现以下情况。当l < k\(+\) 1时,只存在零质量解,添加的物体的质量都为零,也就是质量无穷小。当l (=\) k (+\) 1时,我们证明了k+l-Moulton构型的存在,其中质量是非负的,给定为一个参数族,\({\mathbf {m_{B}}={\mathbf {m_{B_{0}}}}\) t, t (ge \) 0。那么不仅存在零质量解,也存在正质量解,其质量都是正的。此外,当 l > k\(+\) 1 时,不存在零质量解,因为在一个被初始的 k 个体隔开的区间里,不可能有一个以上的体。那么在零质量解中,一次添加的最大物体数是 k\(+\) 1。
For given k bodies of collinear central configuration of Newtonian k-body problem, we ask whether one can add other l bodies at the same time on the line without changing the configuration and motion of the initial bodies so that the total k\(+\)l bodies provide a central configuration. We call it k+l-Moulton configuration. We find the following. When l < k\(+\) 1, there exist only zero-mass solutions, masses of added bodies are all zero that means infinitesimal mass. When l\(=\)k\(+\) 1, we show the existence of k+l-Moulton configuration where masses are non-negative given as a one parameter family, \({\mathbf {m_{B}}}={\mathbf {m_{B_{0}}}}\)t, t\(\ge \) 0. Then there exist not only zero-mass but also positive-mass solutions whose masses are all positive. Moreover when l > k\(+\) 1, there is not zero-mass solution because one cannot put more than one body in an interval which is separated by initial k bodies. Then maximum number of added bodies is k\(+\) 1 at once in zero-mass solutions.