德隆集合正则半径的界限

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Nikolay Dolbilin, Alexey Garber, Egon Schulte, Marjorie Senechal
{"title":"德隆集合正则半径的界限","authors":"Nikolay Dolbilin, Alexey Garber, Egon Schulte, Marjorie Senechal","doi":"10.1007/s00454-024-00666-6","DOIUrl":null,"url":null,"abstract":"<p>Delone sets are discrete point sets <i>X</i> in <span>\\({\\mathbb {R}}^d\\)</span> characterized by parameters (<i>r</i>, <i>R</i>), where (usually) 2<i>r</i> is the smallest inter-point distance of <i>X</i>, and <i>R</i> is the radius of a largest “empty ball” that can be inserted into the interstices of <i>X</i>. The regularity radius <span>\\({\\hat{\\rho }}_d\\)</span> is defined as the smallest positive number <span>\\(\\rho \\)</span> such that each Delone set with congruent clusters of radius <span>\\(\\rho \\)</span> is a regular system, that is, a point orbit under a crystallographic group. We discuss two conjectures on the growth behavior of the regularity radius. Our “Weak Conjecture” states that <span>\\({\\hat{\\rho }}_{d}={\\textrm{O}(d^2\\log _2 d)}R\\)</span> as <span>\\(d\\rightarrow \\infty \\)</span>, independent of <i>r</i>. This is verified in the paper for two important subfamilies of Delone sets: those with full-dimensional clusters of radius 2<i>r</i> and those with full-dimensional sets of <i>d</i>-reachable points. We also offer support for the plausibility of a “Strong Conjecture”, stating that <span>\\({\\hat{\\rho }}_{d}={\\textrm{O}(d\\log _2 d)}R\\)</span> as <span>\\(d\\rightarrow \\infty \\)</span>, independent of <i>r</i>.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"123 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds for the Regularity Radius of Delone Sets\",\"authors\":\"Nikolay Dolbilin, Alexey Garber, Egon Schulte, Marjorie Senechal\",\"doi\":\"10.1007/s00454-024-00666-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Delone sets are discrete point sets <i>X</i> in <span>\\\\({\\\\mathbb {R}}^d\\\\)</span> characterized by parameters (<i>r</i>, <i>R</i>), where (usually) 2<i>r</i> is the smallest inter-point distance of <i>X</i>, and <i>R</i> is the radius of a largest “empty ball” that can be inserted into the interstices of <i>X</i>. The regularity radius <span>\\\\({\\\\hat{\\\\rho }}_d\\\\)</span> is defined as the smallest positive number <span>\\\\(\\\\rho \\\\)</span> such that each Delone set with congruent clusters of radius <span>\\\\(\\\\rho \\\\)</span> is a regular system, that is, a point orbit under a crystallographic group. We discuss two conjectures on the growth behavior of the regularity radius. Our “Weak Conjecture” states that <span>\\\\({\\\\hat{\\\\rho }}_{d}={\\\\textrm{O}(d^2\\\\log _2 d)}R\\\\)</span> as <span>\\\\(d\\\\rightarrow \\\\infty \\\\)</span>, independent of <i>r</i>. This is verified in the paper for two important subfamilies of Delone sets: those with full-dimensional clusters of radius 2<i>r</i> and those with full-dimensional sets of <i>d</i>-reachable points. We also offer support for the plausibility of a “Strong Conjecture”, stating that <span>\\\\({\\\\hat{\\\\rho }}_{d}={\\\\textrm{O}(d\\\\log _2 d)}R\\\\)</span> as <span>\\\\(d\\\\rightarrow \\\\infty \\\\)</span>, independent of <i>r</i>.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00666-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00666-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

Delone 集是 \({\mathbb {R}}^d\) 中的离散点集 X,由参数(r, R)表征,其中(通常)2r 是 X 的最小点间距离,R 是可以插入 X 间隙的最大 "空球 "的半径。正则半径({hat\{\rho }}_d\)被定义为最小的正数(\(\rho \)),使得每个具有半径为\(\rho \)的全等簇的德龙集都是一个正则系统,也就是一个晶体群下的点轨道。我们讨论了关于正则半径增长行为的两个猜想。我们的 "弱猜想 "指出当 \(d\rightarrow \infty \)与 r 无关时,\({\hat{\rho }}_{d}={\textrm{O}(d^2\log _2 d)}R\) 与 r 无关。我们还为 "强猜想 "的合理性提供了支持,即 \({hat\{rho }}_{d}={textrm{O}(d\log _2 d)}R\) as \(d\rightarrow \infty \),与 r 无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bounds for the Regularity Radius of Delone Sets

Bounds for the Regularity Radius of Delone Sets

Delone sets are discrete point sets X in \({\mathbb {R}}^d\) characterized by parameters (rR), where (usually) 2r is the smallest inter-point distance of X, and R is the radius of a largest “empty ball” that can be inserted into the interstices of X. The regularity radius \({\hat{\rho }}_d\) is defined as the smallest positive number \(\rho \) such that each Delone set with congruent clusters of radius \(\rho \) is a regular system, that is, a point orbit under a crystallographic group. We discuss two conjectures on the growth behavior of the regularity radius. Our “Weak Conjecture” states that \({\hat{\rho }}_{d}={\textrm{O}(d^2\log _2 d)}R\) as \(d\rightarrow \infty \), independent of r. This is verified in the paper for two important subfamilies of Delone sets: those with full-dimensional clusters of radius 2r and those with full-dimensional sets of d-reachable points. We also offer support for the plausibility of a “Strong Conjecture”, stating that \({\hat{\rho }}_{d}={\textrm{O}(d\log _2 d)}R\) as \(d\rightarrow \infty \), independent of r.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信