改进的代数退化测试

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Jean Cardinal, Micha Sharir
{"title":"改进的代数退化测试","authors":"Jean Cardinal, Micha Sharir","doi":"10.1007/s00454-024-00673-7","DOIUrl":null,"url":null,"abstract":"<p>In the classical linear degeneracy testing problem, we are given <i>n</i> real numbers and a <i>k</i>-variate linear polynomial <i>F</i>, for some constant <i>k</i>, and have to determine whether there exist <i>k</i> numbers <span>\\(a_1,\\ldots ,a_k\\)</span> from the set such that <span>\\(F(a_1,\\ldots ,a_k) = 0\\)</span>. We consider a generalization of this problem in which <i>F</i> is an arbitrary constant-degree polynomial, we are given <i>k</i> sets of <i>n</i> real numbers, and have to determine whether there exists a <i>k</i>-tuple of numbers, one in each set, on which <i>F</i> vanishes. We give the first improvement over the naïve <span>\\(O^*(n^{k-1})\\)</span> algorithm for this problem (where the <span>\\(O^*(\\cdot )\\)</span> notation omits subpolynomial factors). We show that the problem can be solved in time <span>\\(O^*\\left( n^{k - 2 + \\frac{4}{k+2}}\\right) \\)</span> for even <i>k</i> and in time <span>\\(O^*\\left( n^{k - 2 + \\frac{4k-8}{k^2-5}}\\right) \\)</span> for odd <i>k</i> in the real RAM model of computation. We also prove that for <span>\\(k=4\\)</span>, the problem can be solved in time <span>\\(O^*(n^{2.625})\\)</span> in the algebraic decision tree model, and for <span>\\(k=5\\)</span> it can be solved in time <span>\\(O^*(n^{3.56})\\)</span> in the same model, both improving on the above uniform bounds. All our results rely on an algebraic generalization of the standard meet-in-the-middle algorithm for <i>k</i>-SUM, powered by recent algorithmic advances in the polynomial method for semi-algebraic range searching. In fact, our main technical result is much more broadly applicable, as it provides a general tool for detecting incidences and other interactions between points and algebraic surfaces in any dimension. In particular, it yields an efficient algorithm for a general, algebraic version of Hopcroft’s point-line incidence detection problem in any dimension.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"93 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Algebraic Degeneracy Testing\",\"authors\":\"Jean Cardinal, Micha Sharir\",\"doi\":\"10.1007/s00454-024-00673-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the classical linear degeneracy testing problem, we are given <i>n</i> real numbers and a <i>k</i>-variate linear polynomial <i>F</i>, for some constant <i>k</i>, and have to determine whether there exist <i>k</i> numbers <span>\\\\(a_1,\\\\ldots ,a_k\\\\)</span> from the set such that <span>\\\\(F(a_1,\\\\ldots ,a_k) = 0\\\\)</span>. We consider a generalization of this problem in which <i>F</i> is an arbitrary constant-degree polynomial, we are given <i>k</i> sets of <i>n</i> real numbers, and have to determine whether there exists a <i>k</i>-tuple of numbers, one in each set, on which <i>F</i> vanishes. We give the first improvement over the naïve <span>\\\\(O^*(n^{k-1})\\\\)</span> algorithm for this problem (where the <span>\\\\(O^*(\\\\cdot )\\\\)</span> notation omits subpolynomial factors). We show that the problem can be solved in time <span>\\\\(O^*\\\\left( n^{k - 2 + \\\\frac{4}{k+2}}\\\\right) \\\\)</span> for even <i>k</i> and in time <span>\\\\(O^*\\\\left( n^{k - 2 + \\\\frac{4k-8}{k^2-5}}\\\\right) \\\\)</span> for odd <i>k</i> in the real RAM model of computation. We also prove that for <span>\\\\(k=4\\\\)</span>, the problem can be solved in time <span>\\\\(O^*(n^{2.625})\\\\)</span> in the algebraic decision tree model, and for <span>\\\\(k=5\\\\)</span> it can be solved in time <span>\\\\(O^*(n^{3.56})\\\\)</span> in the same model, both improving on the above uniform bounds. All our results rely on an algebraic generalization of the standard meet-in-the-middle algorithm for <i>k</i>-SUM, powered by recent algorithmic advances in the polynomial method for semi-algebraic range searching. In fact, our main technical result is much more broadly applicable, as it provides a general tool for detecting incidences and other interactions between points and algebraic surfaces in any dimension. In particular, it yields an efficient algorithm for a general, algebraic version of Hopcroft’s point-line incidence detection problem in any dimension.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00673-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00673-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在经典的线性退化检验问题中,我们给定 n 个实数和一个 k 变量线性多项式 F,对于某个常数 k,我们必须确定集合中是否存在 k 个数 \(a_1,\ldots ,a_k\) 使得 \(F(a_1,\ldots ,a_k) = 0\).我们考虑了这一问题的一般化,即 F 是一个任意的常度多项式,我们给定了 n 个实数的 k 个集合,并且必须确定是否存在一个 k 个数的元组,每个集合中都有一个,在这个元组上 F 消失。针对这个问题,我们首次给出了比传统算法(O^*(n^{k-1}))更先进的算法(这里的 \(O^*(\cdot )\ 符号省略了次多项式因子)。我们证明,在实际 RAM 计算模型中,对于偶数 k,这个问题可以在 \(O^*\left( n^{k - 2 +\frac{4}{k+2}\right) \)时间内求解;对于奇数 k,可以在 \(O^*\left( n^{k - 2 +\frac{4k-8}{k^2-5}\right) \)时间内求解。我们还证明,对于(k=4),这个问题可以在代数决策树模型中以(O^*(n^{2.625})\)的时间求解,而对于(k=5),这个问题可以在同一模型中以(O^*(n^{3.56})\)的时间求解,两者都在上述统一边界的基础上有所提高。我们的所有结果都依赖于对 k-SUM 的标准中间相遇算法的代数广义化,并借助半代数范围搜索的多项式方法在算法上的最新进展。事实上,我们的主要技术成果适用范围更广,因为它提供了一种通用工具,可以在任何维度上检测点与代数曲面之间的发生率和其他相互作用。特别是,它为任何维度的霍普克罗夫特点线入射检测问题的一般代数版本提供了一种高效算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improved Algebraic Degeneracy Testing

Improved Algebraic Degeneracy Testing

In the classical linear degeneracy testing problem, we are given n real numbers and a k-variate linear polynomial F, for some constant k, and have to determine whether there exist k numbers \(a_1,\ldots ,a_k\) from the set such that \(F(a_1,\ldots ,a_k) = 0\). We consider a generalization of this problem in which F is an arbitrary constant-degree polynomial, we are given k sets of n real numbers, and have to determine whether there exists a k-tuple of numbers, one in each set, on which F vanishes. We give the first improvement over the naïve \(O^*(n^{k-1})\) algorithm for this problem (where the \(O^*(\cdot )\) notation omits subpolynomial factors). We show that the problem can be solved in time \(O^*\left( n^{k - 2 + \frac{4}{k+2}}\right) \) for even k and in time \(O^*\left( n^{k - 2 + \frac{4k-8}{k^2-5}}\right) \) for odd k in the real RAM model of computation. We also prove that for \(k=4\), the problem can be solved in time \(O^*(n^{2.625})\) in the algebraic decision tree model, and for \(k=5\) it can be solved in time \(O^*(n^{3.56})\) in the same model, both improving on the above uniform bounds. All our results rely on an algebraic generalization of the standard meet-in-the-middle algorithm for k-SUM, powered by recent algorithmic advances in the polynomial method for semi-algebraic range searching. In fact, our main technical result is much more broadly applicable, as it provides a general tool for detecting incidences and other interactions between points and algebraic surfaces in any dimension. In particular, it yields an efficient algorithm for a general, algebraic version of Hopcroft’s point-line incidence detection problem in any dimension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信