{"title":"具有替代数据的最优消费-投资问题中的二元性","authors":"Kexin Chen, Hoi Ying Wong","doi":"10.1007/s00780-024-00535-3","DOIUrl":null,"url":null,"abstract":"<p>This study investigates an optimal consumption–investment problem in which the unobserved stock trend is modulated by a hidden Markov chain that represents different economic regimes. In the classic approach, the hidden state is estimated using historical asset prices, but recent technological advances now enable investors to consider alternative data in their decision-making. These data, such as social media commentary, expert opinions, COVID-19 pandemic data and GPS data, come from sources other than standard market data sources but are useful for predicting stock trends. We develop a novel duality theory for this problem and consider a jump-diffusion process for alternative data series. This theory helps investors identify “useful” alternative data for dynamic decision-making by providing conditions for the filter equation that enable the use of a control approach based on the dynamic programming principle. We apply our theory to provide a unique smooth solution for an agent with constant relative risk aversion once the distributions of the signals generated from alternative data satisfy a bounded likelihood ratio condition. In doing so, we obtain an explicit consumption–investment strategy that takes advantage of different types of alternative data that have not been addressed in the literature.</p>","PeriodicalId":50447,"journal":{"name":"Finance and Stochastics","volume":"24 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Duality in optimal consumption–investment problems with alternative data\",\"authors\":\"Kexin Chen, Hoi Ying Wong\",\"doi\":\"10.1007/s00780-024-00535-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates an optimal consumption–investment problem in which the unobserved stock trend is modulated by a hidden Markov chain that represents different economic regimes. In the classic approach, the hidden state is estimated using historical asset prices, but recent technological advances now enable investors to consider alternative data in their decision-making. These data, such as social media commentary, expert opinions, COVID-19 pandemic data and GPS data, come from sources other than standard market data sources but are useful for predicting stock trends. We develop a novel duality theory for this problem and consider a jump-diffusion process for alternative data series. This theory helps investors identify “useful” alternative data for dynamic decision-making by providing conditions for the filter equation that enable the use of a control approach based on the dynamic programming principle. We apply our theory to provide a unique smooth solution for an agent with constant relative risk aversion once the distributions of the signals generated from alternative data satisfy a bounded likelihood ratio condition. In doing so, we obtain an explicit consumption–investment strategy that takes advantage of different types of alternative data that have not been addressed in the literature.</p>\",\"PeriodicalId\":50447,\"journal\":{\"name\":\"Finance and Stochastics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finance and Stochastics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s00780-024-00535-3\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance and Stochastics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s00780-024-00535-3","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Duality in optimal consumption–investment problems with alternative data
This study investigates an optimal consumption–investment problem in which the unobserved stock trend is modulated by a hidden Markov chain that represents different economic regimes. In the classic approach, the hidden state is estimated using historical asset prices, but recent technological advances now enable investors to consider alternative data in their decision-making. These data, such as social media commentary, expert opinions, COVID-19 pandemic data and GPS data, come from sources other than standard market data sources but are useful for predicting stock trends. We develop a novel duality theory for this problem and consider a jump-diffusion process for alternative data series. This theory helps investors identify “useful” alternative data for dynamic decision-making by providing conditions for the filter equation that enable the use of a control approach based on the dynamic programming principle. We apply our theory to provide a unique smooth solution for an agent with constant relative risk aversion once the distributions of the signals generated from alternative data satisfy a bounded likelihood ratio condition. In doing so, we obtain an explicit consumption–investment strategy that takes advantage of different types of alternative data that have not been addressed in the literature.
期刊介绍:
The purpose of Finance and Stochastics is to provide a high standard publication forum for research
- in all areas of finance based on stochastic methods
- on specific topics in mathematics (in particular probability theory, statistics and stochastic analysis) motivated by the analysis of problems in finance.
Finance and Stochastics encompasses - but is not limited to - the following fields:
- theory and analysis of financial markets
- continuous time finance
- derivatives research
- insurance in relation to finance
- portfolio selection
- credit and market risks
- term structure models
- statistical and empirical financial studies based on advanced stochastic methods
- numerical and stochastic solution techniques for problems in finance
- intertemporal economics, uncertainty and information in relation to finance.