最优停止问题的深度神经网络表现力

IF 1.1 2区 经济学 Q3 BUSINESS, FINANCE
Lukas Gonon
{"title":"最优停止问题的深度神经网络表现力","authors":"Lukas Gonon","doi":"10.1007/s00780-024-00538-0","DOIUrl":null,"url":null,"abstract":"<p>This article studies deep neural network expression rates for optimal stopping problems of discrete-time Markov processes on high-dimensional state spaces. A general framework is established in which the value function and continuation value of an optimal stopping problem can be approximated with error at most <span>\\(\\varepsilon \\)</span> by a deep ReLU neural network of size at most <span>\\(\\kappa d^{\\mathfrak{q}} \\varepsilon ^{-\\mathfrak{r}}\\)</span>. The constants <span>\\(\\kappa ,\\mathfrak{q},\\mathfrak{r} \\geq 0\\)</span> do not depend on the dimension <span>\\(d\\)</span> of the state space or the approximation accuracy <span>\\(\\varepsilon \\)</span>. This proves that deep neural networks do not suffer from the curse of dimensionality when employed to approximate solutions of optimal stopping problems. The framework covers for example exponential Lévy models, discrete diffusion processes and their running minima and maxima. These results mathematically justify the use of deep neural networks for numerically solving optimal stopping problems and pricing American options in high dimensions.</p>","PeriodicalId":50447,"journal":{"name":"Finance and Stochastics","volume":"106 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep neural network expressivity for optimal stopping problems\",\"authors\":\"Lukas Gonon\",\"doi\":\"10.1007/s00780-024-00538-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article studies deep neural network expression rates for optimal stopping problems of discrete-time Markov processes on high-dimensional state spaces. A general framework is established in which the value function and continuation value of an optimal stopping problem can be approximated with error at most <span>\\\\(\\\\varepsilon \\\\)</span> by a deep ReLU neural network of size at most <span>\\\\(\\\\kappa d^{\\\\mathfrak{q}} \\\\varepsilon ^{-\\\\mathfrak{r}}\\\\)</span>. The constants <span>\\\\(\\\\kappa ,\\\\mathfrak{q},\\\\mathfrak{r} \\\\geq 0\\\\)</span> do not depend on the dimension <span>\\\\(d\\\\)</span> of the state space or the approximation accuracy <span>\\\\(\\\\varepsilon \\\\)</span>. This proves that deep neural networks do not suffer from the curse of dimensionality when employed to approximate solutions of optimal stopping problems. The framework covers for example exponential Lévy models, discrete diffusion processes and their running minima and maxima. These results mathematically justify the use of deep neural networks for numerically solving optimal stopping problems and pricing American options in high dimensions.</p>\",\"PeriodicalId\":50447,\"journal\":{\"name\":\"Finance and Stochastics\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finance and Stochastics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s00780-024-00538-0\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance and Stochastics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s00780-024-00538-0","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了高维状态空间上离散-时间马尔可夫过程的最优停止问题的深度神经网络表达率。文章建立了一个通用框架,在这个框架中,最优停止问题的值函数和延续值可以由一个规模为 \(\kappa d^{\mathfrak{q}} \varepsilon ^{-\mathfrak{r}}\) 的深度 ReLU 神经网络以误差至多为 \(\varepsilon \)的方式逼近。常数 \(\kappa ,\mathfrak{q},\mathfrak{r} \geq 0\) 并不依赖于状态空间的维度 \(d\) 或近似精度 \(\varepsilon\)。这证明,当深度神经网络用于近似求解最优停止问题时,不会受到维度诅咒的影响。例如,该框架涵盖指数莱维模型、离散扩散过程及其运行最小值和最大值。这些结果从数学角度证明了使用深度神经网络数值求解最优止损问题和高维度美式期权定价的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep neural network expressivity for optimal stopping problems

This article studies deep neural network expression rates for optimal stopping problems of discrete-time Markov processes on high-dimensional state spaces. A general framework is established in which the value function and continuation value of an optimal stopping problem can be approximated with error at most \(\varepsilon \) by a deep ReLU neural network of size at most \(\kappa d^{\mathfrak{q}} \varepsilon ^{-\mathfrak{r}}\). The constants \(\kappa ,\mathfrak{q},\mathfrak{r} \geq 0\) do not depend on the dimension \(d\) of the state space or the approximation accuracy \(\varepsilon \). This proves that deep neural networks do not suffer from the curse of dimensionality when employed to approximate solutions of optimal stopping problems. The framework covers for example exponential Lévy models, discrete diffusion processes and their running minima and maxima. These results mathematically justify the use of deep neural networks for numerically solving optimal stopping problems and pricing American options in high dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Finance and Stochastics
Finance and Stochastics 管理科学-数学跨学科应用
CiteScore
2.90
自引率
5.90%
发文量
20
审稿时长
>12 weeks
期刊介绍: The purpose of Finance and Stochastics is to provide a high standard publication forum for research - in all areas of finance based on stochastic methods - on specific topics in mathematics (in particular probability theory, statistics and stochastic analysis) motivated by the analysis of problems in finance. Finance and Stochastics encompasses - but is not limited to - the following fields: - theory and analysis of financial markets - continuous time finance - derivatives research - insurance in relation to finance - portfolio selection - credit and market risks - term structure models - statistical and empirical financial studies based on advanced stochastic methods - numerical and stochastic solution techniques for problems in finance - intertemporal economics, uncertainty and information in relation to finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信