{"title":"用于非凸最小化的无参数加速梯度下降算法","authors":"Naoki Marumo, Akiko Takeda","doi":"10.1137/22m1540934","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 2, Page 2093-2120, June 2024. <br/> Abstract. We propose a new first-order method for minimizing nonconvex functions with a Lipschitz continuous gradient and Hessian. The proposed method is an accelerated gradient descent with two restart mechanisms and finds a solution where the gradient norm is less than [math] in [math] function and gradient evaluations. Unlike existing first-order methods with similar complexity bounds, our algorithm is parameter-free because it requires no prior knowledge of problem-dependent parameters, e.g., the Lipschitz constants and the target accuracy [math]. The main challenge in achieving this advantage is estimating the Lipschitz constant of the Hessian using only first-order information. To this end, we develop a new Hessian-free analysis based on two technical inequalities: a Jensen-type inequality for gradients and an error bound for the trapezoidal rule. Several numerical results illustrate that the proposed method performs comparably to existing algorithms with similar complexity bounds, even without parameter tuning.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter-Free Accelerated Gradient Descent for Nonconvex Minimization\",\"authors\":\"Naoki Marumo, Akiko Takeda\",\"doi\":\"10.1137/22m1540934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 2, Page 2093-2120, June 2024. <br/> Abstract. We propose a new first-order method for minimizing nonconvex functions with a Lipschitz continuous gradient and Hessian. The proposed method is an accelerated gradient descent with two restart mechanisms and finds a solution where the gradient norm is less than [math] in [math] function and gradient evaluations. Unlike existing first-order methods with similar complexity bounds, our algorithm is parameter-free because it requires no prior knowledge of problem-dependent parameters, e.g., the Lipschitz constants and the target accuracy [math]. The main challenge in achieving this advantage is estimating the Lipschitz constant of the Hessian using only first-order information. To this end, we develop a new Hessian-free analysis based on two technical inequalities: a Jensen-type inequality for gradients and an error bound for the trapezoidal rule. Several numerical results illustrate that the proposed method performs comparably to existing algorithms with similar complexity bounds, even without parameter tuning.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1540934\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1540934","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Parameter-Free Accelerated Gradient Descent for Nonconvex Minimization
SIAM Journal on Optimization, Volume 34, Issue 2, Page 2093-2120, June 2024. Abstract. We propose a new first-order method for minimizing nonconvex functions with a Lipschitz continuous gradient and Hessian. The proposed method is an accelerated gradient descent with two restart mechanisms and finds a solution where the gradient norm is less than [math] in [math] function and gradient evaluations. Unlike existing first-order methods with similar complexity bounds, our algorithm is parameter-free because it requires no prior knowledge of problem-dependent parameters, e.g., the Lipschitz constants and the target accuracy [math]. The main challenge in achieving this advantage is estimating the Lipschitz constant of the Hessian using only first-order information. To this end, we develop a new Hessian-free analysis based on two technical inequalities: a Jensen-type inequality for gradients and an error bound for the trapezoidal rule. Several numerical results illustrate that the proposed method performs comparably to existing algorithms with similar complexity bounds, even without parameter tuning.
期刊介绍:
The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.