Pyxis:在分散的数据中心调度混合任务

IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Sheng Qi;Chao Jin;Mosharaf Chowdhury;Zhenming Liu;Xuanzhe Liu;Xin Jin
{"title":"Pyxis:在分散的数据中心调度混合任务","authors":"Sheng Qi;Chao Jin;Mosharaf Chowdhury;Zhenming Liu;Xuanzhe Liu;Xin Jin","doi":"10.1109/TPDS.2024.3418620","DOIUrl":null,"url":null,"abstract":"Disaggregating compute from storage is an emerging trend in cloud computing. Effectively utilizing resources in both compute and storage pool is the key to high performance. The state-of-the-art scheduler provides optimal scheduling decisions for workloads with homogeneous tasks. However, cloud applications often generate a mix of tasks with diverse compute and IO characteristics, resulting in sub-optimal performance for existing solutions. We present Pyxis, a system that provides optimal scheduling decisions for mixed workloads in disaggregated datacenters with theoretical guarantees. Pyxis is capable of maximizing overall throughput while meeting latency SLOs. Pyxis decouples the scheduling of different tasks. Our insight is that the optimal solution has an “all-or-nothing” structure that can be captured by a single \n<italic>turning point</i>\n in the spectrum of tasks. Based on task characteristics, the turning point partitions the tasks either all to storage nodes or all to compute nodes (none to storage nodes). We theoretically prove that the optimal solution has such a structure, and design an online algorithm with sub-second convergence. We implement a prototype of Pyxis. Experiments on CloudLab with various synthetic and application workloads show that Pyxis improves the throughput by 3–21× over the state-of-the-art solution.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 9","pages":"1536-1550"},"PeriodicalIF":5.6000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyxis: Scheduling Mixed Tasks in Disaggregated Datacenters\",\"authors\":\"Sheng Qi;Chao Jin;Mosharaf Chowdhury;Zhenming Liu;Xuanzhe Liu;Xin Jin\",\"doi\":\"10.1109/TPDS.2024.3418620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disaggregating compute from storage is an emerging trend in cloud computing. Effectively utilizing resources in both compute and storage pool is the key to high performance. The state-of-the-art scheduler provides optimal scheduling decisions for workloads with homogeneous tasks. However, cloud applications often generate a mix of tasks with diverse compute and IO characteristics, resulting in sub-optimal performance for existing solutions. We present Pyxis, a system that provides optimal scheduling decisions for mixed workloads in disaggregated datacenters with theoretical guarantees. Pyxis is capable of maximizing overall throughput while meeting latency SLOs. Pyxis decouples the scheduling of different tasks. Our insight is that the optimal solution has an “all-or-nothing” structure that can be captured by a single \\n<italic>turning point</i>\\n in the spectrum of tasks. Based on task characteristics, the turning point partitions the tasks either all to storage nodes or all to compute nodes (none to storage nodes). We theoretically prove that the optimal solution has such a structure, and design an online algorithm with sub-second convergence. We implement a prototype of Pyxis. Experiments on CloudLab with various synthetic and application workloads show that Pyxis improves the throughput by 3–21× over the state-of-the-art solution.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"35 9\",\"pages\":\"1536-1550\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10570339/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10570339/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

将计算与存储分离是云计算的新兴趋势。有效利用计算和存储池中的资源是实现高性能的关键。最先进的调度程序可为具有同质任务的工作负载提供最佳调度决策。然而,云应用通常会产生具有不同计算和 IO 特性的混合任务,从而导致现有解决方案无法达到最佳性能。我们介绍的 Pyxis 系统可为分解数据中心中的混合工作负载提供最佳调度决策,并提供理论保证。Pyxis 能够最大限度地提高整体吞吐量,同时满足延迟 SLO 要求。Pyxis 分离了不同任务的调度。我们的见解是,最佳解决方案具有 "全有或全无 "的结构,可以通过任务谱中的一个转折点来捕捉。根据任务特征,转折点会将任务划分为两种类型,一种是全部分配给存储节点,另一种是全部分配给计算节点(没有分配给存储节点)。我们从理论上证明了最优解具有这样的结构,并设计了一种亚秒级收敛的在线算法。我们实现了 Pyxis 的原型。在 CloudLab 上使用各种合成和应用工作负载进行的实验表明,Pyxis 比最先进的解决方案提高了 3-21 倍的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pyxis: Scheduling Mixed Tasks in Disaggregated Datacenters
Disaggregating compute from storage is an emerging trend in cloud computing. Effectively utilizing resources in both compute and storage pool is the key to high performance. The state-of-the-art scheduler provides optimal scheduling decisions for workloads with homogeneous tasks. However, cloud applications often generate a mix of tasks with diverse compute and IO characteristics, resulting in sub-optimal performance for existing solutions. We present Pyxis, a system that provides optimal scheduling decisions for mixed workloads in disaggregated datacenters with theoretical guarantees. Pyxis is capable of maximizing overall throughput while meeting latency SLOs. Pyxis decouples the scheduling of different tasks. Our insight is that the optimal solution has an “all-or-nothing” structure that can be captured by a single turning point in the spectrum of tasks. Based on task characteristics, the turning point partitions the tasks either all to storage nodes or all to compute nodes (none to storage nodes). We theoretically prove that the optimal solution has such a structure, and design an online algorithm with sub-second convergence. We implement a prototype of Pyxis. Experiments on CloudLab with various synthetic and application workloads show that Pyxis improves the throughput by 3–21× over the state-of-the-art solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems 工程技术-工程:电子与电气
CiteScore
11.00
自引率
9.40%
发文量
281
审稿时长
5.6 months
期刊介绍: IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to: a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing. b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems. c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation. d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信