Jifan Gao, Philip Mar, Zheng-Zheng Tang, Guanhua Chen
{"title":"对心房颤动患者 2 年中风风险的合理预测。","authors":"Jifan Gao, Philip Mar, Zheng-Zheng Tang, Guanhua Chen","doi":"10.1093/jamia/ocae170","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to develop machine learning models that provide both accurate and equitable predictions of 2-year stroke risk for patients with atrial fibrillation across diverse racial groups.</p><p><strong>Materials and methods: </strong>Our study utilized structured electronic health records (EHR) data from the All of Us Research Program. Machine learning models (LightGBM) were utilized to capture the relations between stroke risks and the predictors used by the widely recognized CHADS2 and CHA2DS2-VASc scores. We mitigated the racial disparity by creating a representative tuning set, customizing tuning criteria, and setting binary thresholds separately for subgroups. We constructed a hold-out test set that not only supports temporal validation but also includes a larger proportion of Black/African Americans for fairness validation.</p><p><strong>Results: </strong>Compared to the original CHADS2 and CHA2DS2-VASc scores, significant improvements were achieved by modeling their predictors using machine learning models (Area Under the Receiver Operating Characteristic curve from near 0.70 to above 0.80). Furthermore, applying our disparity mitigation strategies can effectively enhance model fairness compared to the conventional cross-validation approach.</p><p><strong>Discussion: </strong>Modeling CHADS2 and CHA2DS2-VASc risk factors with LightGBM and our disparity mitigation strategies achieved decent discriminative performance and excellent fairness performance. In addition, this approach can provide a complete interpretation of each predictor. These highlight its potential utility in clinical practice.</p><p><strong>Conclusions: </strong>Our research presents a practical example of addressing clinical challenges through the All of Us Research Program data. The disparity mitigation framework we proposed is adaptable across various models and data modalities, demonstrating broad potential in clinical informatics.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"2820-2828"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631105/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fair prediction of 2-year stroke risk in patients with atrial fibrillation.\",\"authors\":\"Jifan Gao, Philip Mar, Zheng-Zheng Tang, Guanhua Chen\",\"doi\":\"10.1093/jamia/ocae170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aims to develop machine learning models that provide both accurate and equitable predictions of 2-year stroke risk for patients with atrial fibrillation across diverse racial groups.</p><p><strong>Materials and methods: </strong>Our study utilized structured electronic health records (EHR) data from the All of Us Research Program. Machine learning models (LightGBM) were utilized to capture the relations between stroke risks and the predictors used by the widely recognized CHADS2 and CHA2DS2-VASc scores. We mitigated the racial disparity by creating a representative tuning set, customizing tuning criteria, and setting binary thresholds separately for subgroups. We constructed a hold-out test set that not only supports temporal validation but also includes a larger proportion of Black/African Americans for fairness validation.</p><p><strong>Results: </strong>Compared to the original CHADS2 and CHA2DS2-VASc scores, significant improvements were achieved by modeling their predictors using machine learning models (Area Under the Receiver Operating Characteristic curve from near 0.70 to above 0.80). Furthermore, applying our disparity mitigation strategies can effectively enhance model fairness compared to the conventional cross-validation approach.</p><p><strong>Discussion: </strong>Modeling CHADS2 and CHA2DS2-VASc risk factors with LightGBM and our disparity mitigation strategies achieved decent discriminative performance and excellent fairness performance. In addition, this approach can provide a complete interpretation of each predictor. These highlight its potential utility in clinical practice.</p><p><strong>Conclusions: </strong>Our research presents a practical example of addressing clinical challenges through the All of Us Research Program data. The disparity mitigation framework we proposed is adaptable across various models and data modalities, demonstrating broad potential in clinical informatics.</p>\",\"PeriodicalId\":50016,\"journal\":{\"name\":\"Journal of the American Medical Informatics Association\",\"volume\":\" \",\"pages\":\"2820-2828\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631105/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Medical Informatics Association\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1093/jamia/ocae170\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae170","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Fair prediction of 2-year stroke risk in patients with atrial fibrillation.
Objective: This study aims to develop machine learning models that provide both accurate and equitable predictions of 2-year stroke risk for patients with atrial fibrillation across diverse racial groups.
Materials and methods: Our study utilized structured electronic health records (EHR) data from the All of Us Research Program. Machine learning models (LightGBM) were utilized to capture the relations between stroke risks and the predictors used by the widely recognized CHADS2 and CHA2DS2-VASc scores. We mitigated the racial disparity by creating a representative tuning set, customizing tuning criteria, and setting binary thresholds separately for subgroups. We constructed a hold-out test set that not only supports temporal validation but also includes a larger proportion of Black/African Americans for fairness validation.
Results: Compared to the original CHADS2 and CHA2DS2-VASc scores, significant improvements were achieved by modeling their predictors using machine learning models (Area Under the Receiver Operating Characteristic curve from near 0.70 to above 0.80). Furthermore, applying our disparity mitigation strategies can effectively enhance model fairness compared to the conventional cross-validation approach.
Discussion: Modeling CHADS2 and CHA2DS2-VASc risk factors with LightGBM and our disparity mitigation strategies achieved decent discriminative performance and excellent fairness performance. In addition, this approach can provide a complete interpretation of each predictor. These highlight its potential utility in clinical practice.
Conclusions: Our research presents a practical example of addressing clinical challenges through the All of Us Research Program data. The disparity mitigation framework we proposed is adaptable across various models and data modalities, demonstrating broad potential in clinical informatics.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.