Parisa Shabani, Vahagn Ohanyan, Ammar Alghadeer, Daniel Gavazzi, Feng Dong, Liya Yin, Christopher Kolz, Lindsay Shockling, Molly Enrick, Ping Zhang, Xin Shi, William Chilian
{"title":"骨髓细胞在心脏中形成了七种不同的内皮细胞群。","authors":"Parisa Shabani, Vahagn Ohanyan, Ammar Alghadeer, Daniel Gavazzi, Feng Dong, Liya Yin, Christopher Kolz, Lindsay Shockling, Molly Enrick, Ping Zhang, Xin Shi, William Chilian","doi":"10.1007/s00395-024-01065-x","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the mechanisms underlying vascular regeneration in the heart is crucial for developing novel therapeutic strategies for myocardial ischemia. This study investigates the contribution of bone marrow-derived cells to endothelial cell populations in the heart, and their role in cardiac function and coronary circulation following repetitive ischemia (RI). Chimeric rats were created by transplanting BM cells from GFP female rats into irradiated male recipients. After engraftment chimeras were subjected to RI for 17 days. Vascular growth was assessed from recovery of cardiac function and increases in myocardial blood flow during LAD occlusion. After sorting GFP<sup>+</sup> BM cells from heart and bone of Control and RI rats, single-cell RNA sequencing was implemented to determine the fate of BM cells. Our in vivo RI model demonstrated an improvement in cardiac function and myocardial blood flow after 17 days of RI with increased capillary density in the rats subjected to RI compared to Controls. Single-cell RNA sequencing of bone marrow cells isolated from rats' hearts identified distinct endothelial cell (EC) subpopulations. These ECs exhibited heterogeneous gene expression profiles and were enriched for markers of capillary, artery, lymphatic, venous, and immune ECs. Furthermore, BM-derived ECs in the RI group showed an angiogenic profile, characterized by upregulated genes associated with blood vessel development and angiogenesis. This study elucidates the heterogeneity of bone marrow-derived endothelial cells in the heart and their response to repetitive ischemia, laying the groundwork for targeting specific subpopulations for therapeutic angiogenesis in myocardial ischemia.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"699-715"},"PeriodicalIF":7.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319501/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bone marrow cells contribute to seven different endothelial cell populations in the heart.\",\"authors\":\"Parisa Shabani, Vahagn Ohanyan, Ammar Alghadeer, Daniel Gavazzi, Feng Dong, Liya Yin, Christopher Kolz, Lindsay Shockling, Molly Enrick, Ping Zhang, Xin Shi, William Chilian\",\"doi\":\"10.1007/s00395-024-01065-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the mechanisms underlying vascular regeneration in the heart is crucial for developing novel therapeutic strategies for myocardial ischemia. This study investigates the contribution of bone marrow-derived cells to endothelial cell populations in the heart, and their role in cardiac function and coronary circulation following repetitive ischemia (RI). Chimeric rats were created by transplanting BM cells from GFP female rats into irradiated male recipients. After engraftment chimeras were subjected to RI for 17 days. Vascular growth was assessed from recovery of cardiac function and increases in myocardial blood flow during LAD occlusion. After sorting GFP<sup>+</sup> BM cells from heart and bone of Control and RI rats, single-cell RNA sequencing was implemented to determine the fate of BM cells. Our in vivo RI model demonstrated an improvement in cardiac function and myocardial blood flow after 17 days of RI with increased capillary density in the rats subjected to RI compared to Controls. Single-cell RNA sequencing of bone marrow cells isolated from rats' hearts identified distinct endothelial cell (EC) subpopulations. These ECs exhibited heterogeneous gene expression profiles and were enriched for markers of capillary, artery, lymphatic, venous, and immune ECs. Furthermore, BM-derived ECs in the RI group showed an angiogenic profile, characterized by upregulated genes associated with blood vessel development and angiogenesis. This study elucidates the heterogeneity of bone marrow-derived endothelial cells in the heart and their response to repetitive ischemia, laying the groundwork for targeting specific subpopulations for therapeutic angiogenesis in myocardial ischemia.</p>\",\"PeriodicalId\":8723,\"journal\":{\"name\":\"Basic Research in Cardiology\",\"volume\":\" \",\"pages\":\"699-715\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319501/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic Research in Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00395-024-01065-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-024-01065-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
了解心脏血管再生的内在机制对于开发治疗心肌缺血的新型疗法至关重要。本研究探讨了骨髓衍生细胞对心脏内皮细胞群的贡献,以及它们在反复缺血(RI)后对心脏功能和冠状动脉循环的作用。通过将 GFP 雌性大鼠的骨髓细胞移植到接受辐照的雄性大鼠体内,制造出嵌合体大鼠。嵌合体在移植后接受 17 天的 RI 治疗。根据心脏功能的恢复情况和左心室动脉闭塞时心肌血流量的增加情况来评估血管生长情况。从对照组和RI组大鼠的心脏和骨骼中分拣出GFP+ BM细胞后,进行单细胞RNA测序以确定BM细胞的命运。我们的体内 RI 模型显示,与对照组相比,接受 RI 的大鼠在接受 17 天 RI 后心脏功能和心肌血流得到改善,毛细血管密度增加。从大鼠心脏分离的骨髓细胞的单细胞 RNA 测序发现了不同的内皮细胞(EC)亚群。这些内皮细胞表现出异质性基因表达谱,并富含毛细血管、动脉、淋巴、静脉和免疫内皮细胞的标记物。此外,RI 组的生化母细胞源性 EC 显示出血管生成特征,其特点是与血管发育和血管生成相关的基因上调。这项研究阐明了心脏中骨髓源性内皮细胞的异质性及其对反复缺血的反应,为针对特定亚群治疗心肌缺血中的血管生成奠定了基础。
Bone marrow cells contribute to seven different endothelial cell populations in the heart.
Understanding the mechanisms underlying vascular regeneration in the heart is crucial for developing novel therapeutic strategies for myocardial ischemia. This study investigates the contribution of bone marrow-derived cells to endothelial cell populations in the heart, and their role in cardiac function and coronary circulation following repetitive ischemia (RI). Chimeric rats were created by transplanting BM cells from GFP female rats into irradiated male recipients. After engraftment chimeras were subjected to RI for 17 days. Vascular growth was assessed from recovery of cardiac function and increases in myocardial blood flow during LAD occlusion. After sorting GFP+ BM cells from heart and bone of Control and RI rats, single-cell RNA sequencing was implemented to determine the fate of BM cells. Our in vivo RI model demonstrated an improvement in cardiac function and myocardial blood flow after 17 days of RI with increased capillary density in the rats subjected to RI compared to Controls. Single-cell RNA sequencing of bone marrow cells isolated from rats' hearts identified distinct endothelial cell (EC) subpopulations. These ECs exhibited heterogeneous gene expression profiles and were enriched for markers of capillary, artery, lymphatic, venous, and immune ECs. Furthermore, BM-derived ECs in the RI group showed an angiogenic profile, characterized by upregulated genes associated with blood vessel development and angiogenesis. This study elucidates the heterogeneity of bone marrow-derived endothelial cells in the heart and their response to repetitive ischemia, laying the groundwork for targeting specific subpopulations for therapeutic angiogenesis in myocardial ischemia.
期刊介绍:
Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards.
Basic Research in Cardiology regularly receives articles from the fields of
- Molecular and Cellular Biology
- Biochemistry
- Biophysics
- Pharmacology
- Physiology and Pathology
- Clinical Cardiology