Xiaohui Chen;Lin Chen;Lingjun Chen;Peng Chen;Guanqun Sheng;Xiaosheng Yu;Yaobin Zou
{"title":"背景热噪声和条纹干扰下的热红外图像衰减和真实世界超分辨率建模","authors":"Xiaohui Chen;Lin Chen;Lingjun Chen;Peng Chen;Guanqun Sheng;Xiaosheng Yu;Yaobin Zou","doi":"10.1109/TCSVT.2023.3349182","DOIUrl":null,"url":null,"abstract":"Thermal infrared image super-resolution technology successfully solves the problems of low resolution and blurred texture details in infrared images. However, the problem of background thermal noise and streak interference in thermal infrared images has not been effectively solved. Therefore, in this paper, we analyze and model the generation of background thermal noise and streak interference, and propose a real-world super-resolution algorithm based on generative adversarial network with multi-structure fusion. We first statistically analyze the imaging principle and dataset of the thermal imager to better model the phenomenon of background thermal noise and streak interference present in thermal infrared images. Meanwhile, in order to better recover the details, we use grayed-out visible images to guide the network training and propose a novel generator with multi-structural fusion. In the generator, we design a dynamic dense-attention module that dynamically assigns weights to the attention branch and the densely connected branch to take full advantage of both branches. Compared to other state-of-the-art methods, our proposed method exhibits excellent visual effects, effectively eliminating the effects of noise and streaks while enhancing image texture information.","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"34 7","pages":"6194-6206"},"PeriodicalIF":11.1000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Thermal Infrared Image Degradation and Real-World Super-Resolution Under Background Thermal Noise and Streak Interference\",\"authors\":\"Xiaohui Chen;Lin Chen;Lingjun Chen;Peng Chen;Guanqun Sheng;Xiaosheng Yu;Yaobin Zou\",\"doi\":\"10.1109/TCSVT.2023.3349182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal infrared image super-resolution technology successfully solves the problems of low resolution and blurred texture details in infrared images. However, the problem of background thermal noise and streak interference in thermal infrared images has not been effectively solved. Therefore, in this paper, we analyze and model the generation of background thermal noise and streak interference, and propose a real-world super-resolution algorithm based on generative adversarial network with multi-structure fusion. We first statistically analyze the imaging principle and dataset of the thermal imager to better model the phenomenon of background thermal noise and streak interference present in thermal infrared images. Meanwhile, in order to better recover the details, we use grayed-out visible images to guide the network training and propose a novel generator with multi-structural fusion. In the generator, we design a dynamic dense-attention module that dynamically assigns weights to the attention branch and the densely connected branch to take full advantage of both branches. Compared to other state-of-the-art methods, our proposed method exhibits excellent visual effects, effectively eliminating the effects of noise and streaks while enhancing image texture information.\",\"PeriodicalId\":13082,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"volume\":\"34 7\",\"pages\":\"6194-6206\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems for Video Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10379652/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems for Video Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10379652/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Modeling Thermal Infrared Image Degradation and Real-World Super-Resolution Under Background Thermal Noise and Streak Interference
Thermal infrared image super-resolution technology successfully solves the problems of low resolution and blurred texture details in infrared images. However, the problem of background thermal noise and streak interference in thermal infrared images has not been effectively solved. Therefore, in this paper, we analyze and model the generation of background thermal noise and streak interference, and propose a real-world super-resolution algorithm based on generative adversarial network with multi-structure fusion. We first statistically analyze the imaging principle and dataset of the thermal imager to better model the phenomenon of background thermal noise and streak interference present in thermal infrared images. Meanwhile, in order to better recover the details, we use grayed-out visible images to guide the network training and propose a novel generator with multi-structural fusion. In the generator, we design a dynamic dense-attention module that dynamically assigns weights to the attention branch and the densely connected branch to take full advantage of both branches. Compared to other state-of-the-art methods, our proposed method exhibits excellent visual effects, effectively eliminating the effects of noise and streaks while enhancing image texture information.
期刊介绍:
The IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) is dedicated to covering all aspects of video technologies from a circuits and systems perspective. We encourage submissions of general, theoretical, and application-oriented papers related to image and video acquisition, representation, presentation, and display. Additionally, we welcome contributions in areas such as processing, filtering, and transforms; analysis and synthesis; learning and understanding; compression, transmission, communication, and networking; as well as storage, retrieval, indexing, and search. Furthermore, papers focusing on hardware and software design and implementation are highly valued. Join us in advancing the field of video technology through innovative research and insights.