优化 6G OTFS 中 PAPR、BER 和 PSD 的混合方法:对医疗保健的影响

IF 2.9 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Arun Kumar;Sumit Chakravarthy;Nishant Gaur;Aziz Nanthaamornphong
{"title":"优化 6G OTFS 中 PAPR、BER 和 PSD 的混合方法:对医疗保健的影响","authors":"Arun Kumar;Sumit Chakravarthy;Nishant Gaur;Aziz Nanthaamornphong","doi":"10.23919/JCN.2024.000027","DOIUrl":null,"url":null,"abstract":"The envisioned smart hospital framework leveraging the sixth-generation (6G) technology aims to enhance healthcare services by ensuring reliable communication across various wireless channel conditions, including both line-of-sight and obstructed paths. However, the traditional orthogonal frequency division multiplexing (OFDM) approach, used in 4G and 5G, struggles with the high Doppler shifts associated with dynamic environments, presenting challenges for burgeoning smart hospital demands. To address this, orthogonal time frequency space (OTFS) modulation is proposed. The OTFS operates effectively across both stationary and highly mobile channels by manipulating delay and Doppler domains. Nevertheless, a high peak-to-average power ratio (PAPR) remains a critical challenge for OTFS implementation within 6G smart hospitals. Elevated PAPR levels can reduce power amplifier efficiency, causing them to operate outside their ideal linear range and impairing battery performance. They also contribute to signal distortion, increased interference, and suboptimal spectrum utilization, which can undermine wireless communication and data integrity. To mitigate the PAPR issue in OTFS, this work introduces a hybrid algorithm that integrates the benefits of the Riemann matrix optimal phase element-based partial transmission sequence (PTS) and selective mapping (SLM), along with A and μ-law complementary algorithms. This study compares the performance of the proposed hybrid algorithm with traditional PAPR reduction techniques by evaluating metrics such as PAPR, bit error rate (BER), and power spectrum density (PSD) within the Rician and Rayleigh fading channels. Simulation outcomes indicate that the hybrid algorithm achieves superior PAPR, BER, and PSD performance with only a marginal increase in complexity when compared with the established methods.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"26 3","pages":"308-320"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579720","citationCount":"0","resultStr":"{\"title\":\"Hybrid approaches to PAPR, BER, and PSD optimization in 6G OTFS: Implications for healthcare\",\"authors\":\"Arun Kumar;Sumit Chakravarthy;Nishant Gaur;Aziz Nanthaamornphong\",\"doi\":\"10.23919/JCN.2024.000027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The envisioned smart hospital framework leveraging the sixth-generation (6G) technology aims to enhance healthcare services by ensuring reliable communication across various wireless channel conditions, including both line-of-sight and obstructed paths. However, the traditional orthogonal frequency division multiplexing (OFDM) approach, used in 4G and 5G, struggles with the high Doppler shifts associated with dynamic environments, presenting challenges for burgeoning smart hospital demands. To address this, orthogonal time frequency space (OTFS) modulation is proposed. The OTFS operates effectively across both stationary and highly mobile channels by manipulating delay and Doppler domains. Nevertheless, a high peak-to-average power ratio (PAPR) remains a critical challenge for OTFS implementation within 6G smart hospitals. Elevated PAPR levels can reduce power amplifier efficiency, causing them to operate outside their ideal linear range and impairing battery performance. They also contribute to signal distortion, increased interference, and suboptimal spectrum utilization, which can undermine wireless communication and data integrity. To mitigate the PAPR issue in OTFS, this work introduces a hybrid algorithm that integrates the benefits of the Riemann matrix optimal phase element-based partial transmission sequence (PTS) and selective mapping (SLM), along with A and μ-law complementary algorithms. This study compares the performance of the proposed hybrid algorithm with traditional PAPR reduction techniques by evaluating metrics such as PAPR, bit error rate (BER), and power spectrum density (PSD) within the Rician and Rayleigh fading channels. Simulation outcomes indicate that the hybrid algorithm achieves superior PAPR, BER, and PSD performance with only a marginal increase in complexity when compared with the established methods.\",\"PeriodicalId\":54864,\"journal\":{\"name\":\"Journal of Communications and Networks\",\"volume\":\"26 3\",\"pages\":\"308-320\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579720\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10579720/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10579720/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

设想中的利用第六代(6G)技术的智能医院框架旨在通过确保在各种无线信道条件(包括视距和障碍路径)下的可靠通信来提升医疗保健服务。然而,4G 和 5G 中使用的传统正交频分复用(OFDM)方法难以应对与动态环境相关的高多普勒频移,这给不断增长的智能医院需求带来了挑战。为解决这一问题,提出了正交时频空间(OTFS)调制。通过操纵延迟和多普勒域,OTFS 可在静止和高度移动信道中有效运行。然而,峰均功率比(PAPR)过高仍然是在 6G 智能医院中实施 OTFS 的关键挑战。PAPR 水平升高会降低功率放大器的效率,使其在理想线性范围之外运行,并损害电池性能。它们还会导致信号失真、干扰增加和频谱利用率低下,从而破坏无线通信和数据完整性。为了缓解 OTFS 中的 PAPR 问题,本研究引入了一种混合算法,该算法综合了基于黎曼矩阵最优相位元的部分传输序列 (PTS) 和选择性映射 (SLM) 以及 A 和 μ 法互补算法的优点。本研究通过评估里氏和瑞利衰落信道中的 PAPR、误码率 (BER) 和功率谱密度 (PSD) 等指标,比较了所提出的混合算法与传统 PAPR 降低技术的性能。仿真结果表明,与既有方法相比,混合算法实现了更优越的 PAPR、误码率和 PSD 性能,而复杂度仅略有增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid approaches to PAPR, BER, and PSD optimization in 6G OTFS: Implications for healthcare
The envisioned smart hospital framework leveraging the sixth-generation (6G) technology aims to enhance healthcare services by ensuring reliable communication across various wireless channel conditions, including both line-of-sight and obstructed paths. However, the traditional orthogonal frequency division multiplexing (OFDM) approach, used in 4G and 5G, struggles with the high Doppler shifts associated with dynamic environments, presenting challenges for burgeoning smart hospital demands. To address this, orthogonal time frequency space (OTFS) modulation is proposed. The OTFS operates effectively across both stationary and highly mobile channels by manipulating delay and Doppler domains. Nevertheless, a high peak-to-average power ratio (PAPR) remains a critical challenge for OTFS implementation within 6G smart hospitals. Elevated PAPR levels can reduce power amplifier efficiency, causing them to operate outside their ideal linear range and impairing battery performance. They also contribute to signal distortion, increased interference, and suboptimal spectrum utilization, which can undermine wireless communication and data integrity. To mitigate the PAPR issue in OTFS, this work introduces a hybrid algorithm that integrates the benefits of the Riemann matrix optimal phase element-based partial transmission sequence (PTS) and selective mapping (SLM), along with A and μ-law complementary algorithms. This study compares the performance of the proposed hybrid algorithm with traditional PAPR reduction techniques by evaluating metrics such as PAPR, bit error rate (BER), and power spectrum density (PSD) within the Rician and Rayleigh fading channels. Simulation outcomes indicate that the hybrid algorithm achieves superior PAPR, BER, and PSD performance with only a marginal increase in complexity when compared with the established methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
5.60%
发文量
66
审稿时长
14.4 months
期刊介绍: The JOURNAL OF COMMUNICATIONS AND NETWORKS is published six times per year, and is committed to publishing high-quality papers that advance the state-of-the-art and practical applications of communications and information networks. Theoretical research contributions presenting new techniques, concepts, or analyses, applied contributions reporting on experiences and experiments, and tutorial expositions of permanent reference value are welcome. The subjects covered by this journal include all topics in communication theory and techniques, communication systems, and information networks. COMMUNICATION THEORY AND SYSTEMS WIRELESS COMMUNICATIONS NETWORKS AND SERVICES.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信