LLM4CP:为通道预测调整大型语言模型

Boxun Liu;Xuanyu Liu;Shijian Gao;Xiang Cheng;Liuqing Yang
{"title":"LLM4CP:为通道预测调整大型语言模型","authors":"Boxun Liu;Xuanyu Liu;Shijian Gao;Xiang Cheng;Liuqing Yang","doi":"10.23919/JCIN.2024.10582829","DOIUrl":null,"url":null,"abstract":"Channel prediction is an effective approach for reducing the feedback or estimation overhead in massive multi-input multi-output (m-MIMO) systems. However, existing channel prediction methods lack precision due to model mismatch errors or network generalization issues. Large language models (LLMs) have demonstrated powerful modeling and generalization abilities, and have been successfully applied to cross-modal tasks, including the time series analysis. Leveraging the expressive power of LLMs, we propose a pre-trained LLM-empowered channel prediction (LLM4CP) method to predict the future downlink channel state information (CSI) sequence based on the historical uplink CSI sequence. We fine-tune the network while freezing most of the parameters of the pre-trained LLM for better cross-modality knowledge transfer. To bridge the gap between the channel data and the feature space of the LLM, preprocessor, embedding, and output modules are specifically tailored by taking into account unique channel characteristics. Simulations validate that the proposed method achieves state-of-the-art (SOTA) prediction performance on full-sample, few-shot, and generalization tests with low training and inference costs.","PeriodicalId":100766,"journal":{"name":"Journal of Communications and Information Networks","volume":"9 2","pages":"113-125"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10582829","citationCount":"0","resultStr":"{\"title\":\"LLM4CP: Adapting Large Language Models for Channel Prediction\",\"authors\":\"Boxun Liu;Xuanyu Liu;Shijian Gao;Xiang Cheng;Liuqing Yang\",\"doi\":\"10.23919/JCIN.2024.10582829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel prediction is an effective approach for reducing the feedback or estimation overhead in massive multi-input multi-output (m-MIMO) systems. However, existing channel prediction methods lack precision due to model mismatch errors or network generalization issues. Large language models (LLMs) have demonstrated powerful modeling and generalization abilities, and have been successfully applied to cross-modal tasks, including the time series analysis. Leveraging the expressive power of LLMs, we propose a pre-trained LLM-empowered channel prediction (LLM4CP) method to predict the future downlink channel state information (CSI) sequence based on the historical uplink CSI sequence. We fine-tune the network while freezing most of the parameters of the pre-trained LLM for better cross-modality knowledge transfer. To bridge the gap between the channel data and the feature space of the LLM, preprocessor, embedding, and output modules are specifically tailored by taking into account unique channel characteristics. Simulations validate that the proposed method achieves state-of-the-art (SOTA) prediction performance on full-sample, few-shot, and generalization tests with low training and inference costs.\",\"PeriodicalId\":100766,\"journal\":{\"name\":\"Journal of Communications and Information Networks\",\"volume\":\"9 2\",\"pages\":\"113-125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10582829\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications and Information Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10582829/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10582829/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大规模多输入多输出(m-MIMO)系统中,信道预测是减少反馈或估计开销的有效方法。然而,由于模型不匹配误差或网络泛化问题,现有的信道预测方法缺乏精确性。大型语言模型(LLM)已经展示出强大的建模和泛化能力,并已成功应用于跨模态任务,包括时间序列分析。利用 LLM 的表现力,我们提出了一种预训练 LLM 增强信道预测(LLM4CP)方法,根据历史上行链路 CSI 序列预测未来下行链路信道状态信息(CSI)序列。我们对网络进行了微调,同时冻结了预训练 LLM 的大部分参数,以实现更好的跨模态知识转移。为了弥合信道数据与 LLM 特征空间之间的差距,我们考虑到独特的信道特征,专门定制了预处理器、嵌入和输出模块。仿真验证了所提出的方法在全样本、少量样本和泛化测试中以较低的训练和推理成本实现了最先进的(SOTA)预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LLM4CP: Adapting Large Language Models for Channel Prediction
Channel prediction is an effective approach for reducing the feedback or estimation overhead in massive multi-input multi-output (m-MIMO) systems. However, existing channel prediction methods lack precision due to model mismatch errors or network generalization issues. Large language models (LLMs) have demonstrated powerful modeling and generalization abilities, and have been successfully applied to cross-modal tasks, including the time series analysis. Leveraging the expressive power of LLMs, we propose a pre-trained LLM-empowered channel prediction (LLM4CP) method to predict the future downlink channel state information (CSI) sequence based on the historical uplink CSI sequence. We fine-tune the network while freezing most of the parameters of the pre-trained LLM for better cross-modality knowledge transfer. To bridge the gap between the channel data and the feature space of the LLM, preprocessor, embedding, and output modules are specifically tailored by taking into account unique channel characteristics. Simulations validate that the proposed method achieves state-of-the-art (SOTA) prediction performance on full-sample, few-shot, and generalization tests with low training and inference costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信