Guangneng Yang, Na Liu, Xu Zhang, Hua Zhou, Yiju Hou, Peng Wu, Xi Zhang
{"title":"基于 MaxEnt 模型预测 Chimonobambusautilis(Poaceae, Bambusoideae)在中国的潜在分布。","authors":"Guangneng Yang, Na Liu, Xu Zhang, Hua Zhou, Yiju Hou, Peng Wu, Xi Zhang","doi":"10.3897/BDJ.12.e126620","DOIUrl":null,"url":null,"abstract":"<p><p><i>Chimonobambusautilis</i> is a unique edible bamboo species valued for its economic and nutritional benefits. However, its existence in natural habitats is at risk due to environmental shifts and human interventions. This research utilised the maximum entropy model (MaxEnt) to predict potential habitats for <i>Ch.utilis</i> in China, identifying key environmental factors influencing its distribution and analysing changes in suitable habitats under future climate conditions. The results show that the results of the MaxEnt model have high prediction accuracy, with an AUC (Area Under the receiver operating characteristic Curve) value of 0.997. Precipitation in the driest month (Bio14), altitude (Alt) and isothermality (Bio03) emerged as the primary environmental factors influencing the <i>Ch.utilis</i> distribution. Currently, the suitable habitats area for <i>Ch.utilis</i> is 10.55 × 10<sup>4</sup> km<sup>2</sup>. Projections for the 2050s and 2090s indicate potential changes in suitable habitats ranging from -3.79% to 10.52%. In general, the most suitable habitat area will decrease and shrink towards higher latitude areas in the future. This study provides a scientific basis for the introduction, cultivation and conservation of <i>Ch.utilis</i>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217648/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction of the potential distribution of <i>Chimonobambusautilis</i> (Poaceae, Bambusoideae) in China, based on the MaxEnt model.\",\"authors\":\"Guangneng Yang, Na Liu, Xu Zhang, Hua Zhou, Yiju Hou, Peng Wu, Xi Zhang\",\"doi\":\"10.3897/BDJ.12.e126620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Chimonobambusautilis</i> is a unique edible bamboo species valued for its economic and nutritional benefits. However, its existence in natural habitats is at risk due to environmental shifts and human interventions. This research utilised the maximum entropy model (MaxEnt) to predict potential habitats for <i>Ch.utilis</i> in China, identifying key environmental factors influencing its distribution and analysing changes in suitable habitats under future climate conditions. The results show that the results of the MaxEnt model have high prediction accuracy, with an AUC (Area Under the receiver operating characteristic Curve) value of 0.997. Precipitation in the driest month (Bio14), altitude (Alt) and isothermality (Bio03) emerged as the primary environmental factors influencing the <i>Ch.utilis</i> distribution. Currently, the suitable habitats area for <i>Ch.utilis</i> is 10.55 × 10<sup>4</sup> km<sup>2</sup>. Projections for the 2050s and 2090s indicate potential changes in suitable habitats ranging from -3.79% to 10.52%. In general, the most suitable habitat area will decrease and shrink towards higher latitude areas in the future. This study provides a scientific basis for the introduction, cultivation and conservation of <i>Ch.utilis</i>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217648/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3897/BDJ.12.e126620\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3897/BDJ.12.e126620","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Prediction of the potential distribution of Chimonobambusautilis (Poaceae, Bambusoideae) in China, based on the MaxEnt model.
Chimonobambusautilis is a unique edible bamboo species valued for its economic and nutritional benefits. However, its existence in natural habitats is at risk due to environmental shifts and human interventions. This research utilised the maximum entropy model (MaxEnt) to predict potential habitats for Ch.utilis in China, identifying key environmental factors influencing its distribution and analysing changes in suitable habitats under future climate conditions. The results show that the results of the MaxEnt model have high prediction accuracy, with an AUC (Area Under the receiver operating characteristic Curve) value of 0.997. Precipitation in the driest month (Bio14), altitude (Alt) and isothermality (Bio03) emerged as the primary environmental factors influencing the Ch.utilis distribution. Currently, the suitable habitats area for Ch.utilis is 10.55 × 104 km2. Projections for the 2050s and 2090s indicate potential changes in suitable habitats ranging from -3.79% to 10.52%. In general, the most suitable habitat area will decrease and shrink towards higher latitude areas in the future. This study provides a scientific basis for the introduction, cultivation and conservation of Ch.utilis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.