Heba Sourkatti, Juha Pajula, Teemu Keski-Kuha, Juha Koivisto, Mika Hilvo, Jaakko Lähteenmäki
{"title":"建立预测模型,以识别大量使用医疗和社会服务的老年人。","authors":"Heba Sourkatti, Juha Pajula, Teemu Keski-Kuha, Juha Koivisto, Mika Hilvo, Jaakko Lähteenmäki","doi":"10.1080/02813432.2024.2372297","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Machine learning techniques have demonstrated success in predictive modeling across various clinical cases. However, few studies have considered predicting the use of multisectoral health and social services among older adults. This research aims to utilize machine learning models to detect high-risk groups of excessive health and social services utilization at early stage, facilitating the implementation of preventive interventions.</p><p><strong>Methods: </strong>We used pseudonymized data covering a four-year period and including information on a total of 33,374 senior citizens from Southern Finland. The endpoint was defined based on the occurrence of unplanned healthcare visits and the total number of different services used. Input features included individual's basic demographics, health status and past usage of healthcare resources. Logistic regression and eXtreme Gradient Boosting (XGBoost) methods were used for binary classification, with the dataset split into 70% training and 30% testing sets.</p><p><strong>Results: </strong>Subgroup-based results mirrored trends observed in the full cohort, with age and certain health issues, e.g. mental health, emerging as positive predictors for high service utilization. Conversely, hospital stay and urban residence were associated with decreased risk. The models achieved a classification performance (AUC) of 0.61 for the full cohort and varying in the range of 0.55-0.62 for the subgroups.</p><p><strong>Conclusions: </strong>Predictive models offer potential for predicting future high service utilization in the older adult population. Achieving high classification performance remains challenging due to diverse contributing factors. We anticipate that classification performance could be increased by including features based on additional data categories such as socio-economic data.</p>","PeriodicalId":21521,"journal":{"name":"Scandinavian Journal of Primary Health Care","volume":" ","pages":"609-616"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552250/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predictive modeling for identification of older adults with high utilization of health and social services.\",\"authors\":\"Heba Sourkatti, Juha Pajula, Teemu Keski-Kuha, Juha Koivisto, Mika Hilvo, Jaakko Lähteenmäki\",\"doi\":\"10.1080/02813432.2024.2372297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>Machine learning techniques have demonstrated success in predictive modeling across various clinical cases. However, few studies have considered predicting the use of multisectoral health and social services among older adults. This research aims to utilize machine learning models to detect high-risk groups of excessive health and social services utilization at early stage, facilitating the implementation of preventive interventions.</p><p><strong>Methods: </strong>We used pseudonymized data covering a four-year period and including information on a total of 33,374 senior citizens from Southern Finland. The endpoint was defined based on the occurrence of unplanned healthcare visits and the total number of different services used. Input features included individual's basic demographics, health status and past usage of healthcare resources. Logistic regression and eXtreme Gradient Boosting (XGBoost) methods were used for binary classification, with the dataset split into 70% training and 30% testing sets.</p><p><strong>Results: </strong>Subgroup-based results mirrored trends observed in the full cohort, with age and certain health issues, e.g. mental health, emerging as positive predictors for high service utilization. Conversely, hospital stay and urban residence were associated with decreased risk. The models achieved a classification performance (AUC) of 0.61 for the full cohort and varying in the range of 0.55-0.62 for the subgroups.</p><p><strong>Conclusions: </strong>Predictive models offer potential for predicting future high service utilization in the older adult population. Achieving high classification performance remains challenging due to diverse contributing factors. We anticipate that classification performance could be increased by including features based on additional data categories such as socio-economic data.</p>\",\"PeriodicalId\":21521,\"journal\":{\"name\":\"Scandinavian Journal of Primary Health Care\",\"volume\":\" \",\"pages\":\"609-616\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552250/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Primary Health Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02813432.2024.2372297\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Primary Health Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02813432.2024.2372297","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Predictive modeling for identification of older adults with high utilization of health and social services.
Aim: Machine learning techniques have demonstrated success in predictive modeling across various clinical cases. However, few studies have considered predicting the use of multisectoral health and social services among older adults. This research aims to utilize machine learning models to detect high-risk groups of excessive health and social services utilization at early stage, facilitating the implementation of preventive interventions.
Methods: We used pseudonymized data covering a four-year period and including information on a total of 33,374 senior citizens from Southern Finland. The endpoint was defined based on the occurrence of unplanned healthcare visits and the total number of different services used. Input features included individual's basic demographics, health status and past usage of healthcare resources. Logistic regression and eXtreme Gradient Boosting (XGBoost) methods were used for binary classification, with the dataset split into 70% training and 30% testing sets.
Results: Subgroup-based results mirrored trends observed in the full cohort, with age and certain health issues, e.g. mental health, emerging as positive predictors for high service utilization. Conversely, hospital stay and urban residence were associated with decreased risk. The models achieved a classification performance (AUC) of 0.61 for the full cohort and varying in the range of 0.55-0.62 for the subgroups.
Conclusions: Predictive models offer potential for predicting future high service utilization in the older adult population. Achieving high classification performance remains challenging due to diverse contributing factors. We anticipate that classification performance could be increased by including features based on additional data categories such as socio-economic data.
期刊介绍:
Scandinavian Journal of Primary Health Care is an international online open access journal publishing articles with relevance to general practice and primary health care. Focusing on the continuous professional development in family medicine the journal addresses clinical, epidemiological and humanistic topics in relation to the daily clinical practice.
Scandinavian Journal of Primary Health Care is owned by the members of the National Colleges of General Practice in the five Nordic countries through the Nordic Federation of General Practice (NFGP). The journal includes original research on topics related to general practice and family medicine, and publishes both quantitative and qualitative original research, editorials, discussion and analysis papers and reviews to facilitate continuing professional development in family medicine. The journal''s topics range broadly and include:
• Clinical family medicine
• Epidemiological research
• Qualitative research
• Health services research.