Damian Martus, Sarah K Williams, Kira Pichi, Stefanie Mannebach-Götz, Nicolas Kaiser, Barbara Wardas, Claudia Fecher-Trost, Markus R Meyer, Frank Schmitz, Andreas Beck, Richard Fairless, Ricarda Diem, Veit Flockerzi, Anouar Belkacemi
{"title":"Cavβ3有助于维持血脑屏障并减轻实验性自身免疫性脑炎的症状","authors":"Damian Martus, Sarah K Williams, Kira Pichi, Stefanie Mannebach-Götz, Nicolas Kaiser, Barbara Wardas, Claudia Fecher-Trost, Markus R Meyer, Frank Schmitz, Andreas Beck, Richard Fairless, Ricarda Diem, Veit Flockerzi, Anouar Belkacemi","doi":"10.1161/ATVBAHA.124.321141","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tight control of cytoplasmic Ca<sup>2+</sup> concentration in endothelial cells is essential for the regulation of endothelial barrier function. Here, we investigated the role of Cavβ3, a subunit of voltage-gated Ca<sup>2+</sup> (Cav) channels, in modulating Ca<sup>2+</sup> signaling in brain microvascular endothelial cells (BMECs) and how this contributes to the integrity of the blood-brain barrier.</p><p><strong>Methods: </strong>We investigated the function of Cavβ3 in BMECs by Ca<sup>2+</sup> imaging and Western blot, examined the endothelial barrier function in vitro and the integrity of the blood-brain barrier in vivo, and evaluated disease course after induction of experimental autoimmune encephalomyelitis in mice using Cavβ3<sup>-/-</sup> (Cavβ3-deficient) mice as controls.</p><p><strong>Results: </strong>We identified Cavβ3 protein in BMECs, but electrophysiological recordings did not reveal significant Cav channel activity. In vivo, blood-brain barrier integrity was reduced in the absence of Cavβ3. After induction of experimental autoimmune encephalomyelitis, Cavβ3<sup>-/-</sup> mice showed earlier disease onset with exacerbated clinical disability and increased T-cell infiltration. In vitro, the transendothelial resistance of Cavβ3<sup>-/-</sup> BMEC monolayers was lower than that of wild-type BMEC monolayers, and the organization of the junctional protein ZO-1 (zona occludens-1) was impaired. Thrombin stimulates inositol 1,4,5-trisphosphate-dependent Ca<sup>2+</sup> release, which facilitates cell contraction and enhances endothelial barrier permeability via Ca<sup>2+</sup>-dependent phosphorylation of MLC (myosin light chain). These effects were more pronounced in Cavβ3<sup>-/-</sup> than in wild-type BMECs, whereas the differences were abolished in the presence of the MLCK (MLC kinase) inhibitor ML-7. Expression of <i>Cacnb3</i> cDNA in Cavβ3<sup>-/-</sup> BMECs restored the wild-type phenotype. Coimmunoprecipitation and mass spectrometry demonstrated the association of Cavβ3 with inositol 1,4,5-trisphosphate receptor proteins.</p><p><strong>Conclusions: </strong>Independent of its function as a subunit of Cav channels, Cavβ3 interacts with the inositol 1,4,5-trisphosphate receptor and is involved in the tight control of cytoplasmic Ca<sup>2+</sup> concentration and Ca<sup>2+</sup>-dependent MLC phosphorylation in BMECs, and this role of Cavβ3 in BMECs contributes to blood-brain barrier integrity and attenuates the severity of experimental autoimmune encephalomyelitis disease.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":"1833-1851"},"PeriodicalIF":7.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cavβ3 Contributes to the Maintenance of the Blood-Brain Barrier and Alleviates Symptoms of Experimental Autoimmune Encephalomyelitis.\",\"authors\":\"Damian Martus, Sarah K Williams, Kira Pichi, Stefanie Mannebach-Götz, Nicolas Kaiser, Barbara Wardas, Claudia Fecher-Trost, Markus R Meyer, Frank Schmitz, Andreas Beck, Richard Fairless, Ricarda Diem, Veit Flockerzi, Anouar Belkacemi\",\"doi\":\"10.1161/ATVBAHA.124.321141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Tight control of cytoplasmic Ca<sup>2+</sup> concentration in endothelial cells is essential for the regulation of endothelial barrier function. Here, we investigated the role of Cavβ3, a subunit of voltage-gated Ca<sup>2+</sup> (Cav) channels, in modulating Ca<sup>2+</sup> signaling in brain microvascular endothelial cells (BMECs) and how this contributes to the integrity of the blood-brain barrier.</p><p><strong>Methods: </strong>We investigated the function of Cavβ3 in BMECs by Ca<sup>2+</sup> imaging and Western blot, examined the endothelial barrier function in vitro and the integrity of the blood-brain barrier in vivo, and evaluated disease course after induction of experimental autoimmune encephalomyelitis in mice using Cavβ3<sup>-/-</sup> (Cavβ3-deficient) mice as controls.</p><p><strong>Results: </strong>We identified Cavβ3 protein in BMECs, but electrophysiological recordings did not reveal significant Cav channel activity. In vivo, blood-brain barrier integrity was reduced in the absence of Cavβ3. After induction of experimental autoimmune encephalomyelitis, Cavβ3<sup>-/-</sup> mice showed earlier disease onset with exacerbated clinical disability and increased T-cell infiltration. In vitro, the transendothelial resistance of Cavβ3<sup>-/-</sup> BMEC monolayers was lower than that of wild-type BMEC monolayers, and the organization of the junctional protein ZO-1 (zona occludens-1) was impaired. Thrombin stimulates inositol 1,4,5-trisphosphate-dependent Ca<sup>2+</sup> release, which facilitates cell contraction and enhances endothelial barrier permeability via Ca<sup>2+</sup>-dependent phosphorylation of MLC (myosin light chain). These effects were more pronounced in Cavβ3<sup>-/-</sup> than in wild-type BMECs, whereas the differences were abolished in the presence of the MLCK (MLC kinase) inhibitor ML-7. Expression of <i>Cacnb3</i> cDNA in Cavβ3<sup>-/-</sup> BMECs restored the wild-type phenotype. Coimmunoprecipitation and mass spectrometry demonstrated the association of Cavβ3 with inositol 1,4,5-trisphosphate receptor proteins.</p><p><strong>Conclusions: </strong>Independent of its function as a subunit of Cav channels, Cavβ3 interacts with the inositol 1,4,5-trisphosphate receptor and is involved in the tight control of cytoplasmic Ca<sup>2+</sup> concentration and Ca<sup>2+</sup>-dependent MLC phosphorylation in BMECs, and this role of Cavβ3 in BMECs contributes to blood-brain barrier integrity and attenuates the severity of experimental autoimmune encephalomyelitis disease.</p>\",\"PeriodicalId\":8401,\"journal\":{\"name\":\"Arteriosclerosis, Thrombosis, and Vascular Biology\",\"volume\":\" \",\"pages\":\"1833-1851\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arteriosclerosis, Thrombosis, and Vascular Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/ATVBAHA.124.321141\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.124.321141","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Cavβ3 Contributes to the Maintenance of the Blood-Brain Barrier and Alleviates Symptoms of Experimental Autoimmune Encephalomyelitis.
Background: Tight control of cytoplasmic Ca2+ concentration in endothelial cells is essential for the regulation of endothelial barrier function. Here, we investigated the role of Cavβ3, a subunit of voltage-gated Ca2+ (Cav) channels, in modulating Ca2+ signaling in brain microvascular endothelial cells (BMECs) and how this contributes to the integrity of the blood-brain barrier.
Methods: We investigated the function of Cavβ3 in BMECs by Ca2+ imaging and Western blot, examined the endothelial barrier function in vitro and the integrity of the blood-brain barrier in vivo, and evaluated disease course after induction of experimental autoimmune encephalomyelitis in mice using Cavβ3-/- (Cavβ3-deficient) mice as controls.
Results: We identified Cavβ3 protein in BMECs, but electrophysiological recordings did not reveal significant Cav channel activity. In vivo, blood-brain barrier integrity was reduced in the absence of Cavβ3. After induction of experimental autoimmune encephalomyelitis, Cavβ3-/- mice showed earlier disease onset with exacerbated clinical disability and increased T-cell infiltration. In vitro, the transendothelial resistance of Cavβ3-/- BMEC monolayers was lower than that of wild-type BMEC monolayers, and the organization of the junctional protein ZO-1 (zona occludens-1) was impaired. Thrombin stimulates inositol 1,4,5-trisphosphate-dependent Ca2+ release, which facilitates cell contraction and enhances endothelial barrier permeability via Ca2+-dependent phosphorylation of MLC (myosin light chain). These effects were more pronounced in Cavβ3-/- than in wild-type BMECs, whereas the differences were abolished in the presence of the MLCK (MLC kinase) inhibitor ML-7. Expression of Cacnb3 cDNA in Cavβ3-/- BMECs restored the wild-type phenotype. Coimmunoprecipitation and mass spectrometry demonstrated the association of Cavβ3 with inositol 1,4,5-trisphosphate receptor proteins.
Conclusions: Independent of its function as a subunit of Cav channels, Cavβ3 interacts with the inositol 1,4,5-trisphosphate receptor and is involved in the tight control of cytoplasmic Ca2+ concentration and Ca2+-dependent MLC phosphorylation in BMECs, and this role of Cavβ3 in BMECs contributes to blood-brain barrier integrity and attenuates the severity of experimental autoimmune encephalomyelitis disease.
期刊介绍:
The journal "Arteriosclerosis, Thrombosis, and Vascular Biology" (ATVB) is a scientific publication that focuses on the fields of vascular biology, atherosclerosis, and thrombosis. It is a peer-reviewed journal that publishes original research articles, reviews, and other scholarly content related to these areas. The journal is published by the American Heart Association (AHA) and the American Stroke Association (ASA).
The journal was published bi-monthly until January 1992, after which it transitioned to a monthly publication schedule. The journal is aimed at a professional audience, including academic cardiologists, vascular biologists, physiologists, pharmacologists and hematologists.