霍尔德连续漂移的分数福克-普朗克-科尔莫戈罗夫方程

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rongrong Tian, Jinlong Wei
{"title":"霍尔德连续漂移的分数福克-普朗克-科尔莫戈罗夫方程","authors":"Rongrong Tian, Jinlong Wei","doi":"10.1007/s13540-024-00309-w","DOIUrl":null,"url":null,"abstract":"<p>We study the fractional Fokker-Planck-Kolmogorov equation with the fractional index <span>\\(\\alpha \\in [1,2)\\)</span> and use a vector-valued Calderón-Zygmund theorem to obtain the existence and uniqueness of <span>\\(L^p([0,T];{{\\mathcal {C}}}_b^{\\alpha +\\beta }({{\\mathbb {R}}}^d))\\cap W^{1,p}([0,T];{{\\mathcal {C}}}_b^\\beta ({{\\mathbb {R}}}^d))\\)</span> solution under the assumptions that the drift coefficient and nonhomogeneous term are in <span>\\(L^p([0,T];{{\\mathcal {C}}}_b^{\\beta }({{\\mathbb {R}}}^d))\\)</span> with <span>\\(p\\in [\\alpha /(\\alpha -1),+\\infty ]\\)</span> and <span>\\(\\beta \\in (0,1)\\)</span>. As applications, we prove the unique strong solvability as well as Davie’s type uniqueness of time inhomogeneous stochastic differential equation with the drift in <span>\\(L^p([0,T];{{\\mathcal {C}}}_b^{\\beta }({\\mathbb R}^d;{{\\mathbb {R}}}^d))\\)</span> and driven by the <span>\\(\\alpha \\)</span>-stable process for <span>\\(\\beta &gt; 1-\\alpha /2\\)</span> and <span>\\(p&gt;2\\alpha /(\\alpha +2\\beta -2)\\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Fokker-Planck-Kolmogorov equations with Hölder continuous drift\",\"authors\":\"Rongrong Tian, Jinlong Wei\",\"doi\":\"10.1007/s13540-024-00309-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the fractional Fokker-Planck-Kolmogorov equation with the fractional index <span>\\\\(\\\\alpha \\\\in [1,2)\\\\)</span> and use a vector-valued Calderón-Zygmund theorem to obtain the existence and uniqueness of <span>\\\\(L^p([0,T];{{\\\\mathcal {C}}}_b^{\\\\alpha +\\\\beta }({{\\\\mathbb {R}}}^d))\\\\cap W^{1,p}([0,T];{{\\\\mathcal {C}}}_b^\\\\beta ({{\\\\mathbb {R}}}^d))\\\\)</span> solution under the assumptions that the drift coefficient and nonhomogeneous term are in <span>\\\\(L^p([0,T];{{\\\\mathcal {C}}}_b^{\\\\beta }({{\\\\mathbb {R}}}^d))\\\\)</span> with <span>\\\\(p\\\\in [\\\\alpha /(\\\\alpha -1),+\\\\infty ]\\\\)</span> and <span>\\\\(\\\\beta \\\\in (0,1)\\\\)</span>. As applications, we prove the unique strong solvability as well as Davie’s type uniqueness of time inhomogeneous stochastic differential equation with the drift in <span>\\\\(L^p([0,T];{{\\\\mathcal {C}}}_b^{\\\\beta }({\\\\mathbb R}^d;{{\\\\mathbb {R}}}^d))\\\\)</span> and driven by the <span>\\\\(\\\\alpha \\\\)</span>-stable process for <span>\\\\(\\\\beta &gt; 1-\\\\alpha /2\\\\)</span> and <span>\\\\(p&gt;2\\\\alpha /(\\\\alpha +2\\\\beta -2)\\\\)</span>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00309-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00309-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了分数指数为 \(\alpha \in [1,2)\) 的分数 Fokker-Planck-Kolmogorov 方程,并使用向量值 Calderón-Zygmund 定理得到了 \(L^p([0,T];{{\mathcal {C}}_b^{α +\beta }({{\mathbb {R}}^d))\cap W^{1,p}([0,T];{{/mathcal{C}}}_b^/beta({{/mathbb {R}}}^d)) 解,前提是漂移系数和非均质项都在\(L^p([0,T];{{mathcal{C}}}_b^{beta}({{mathbb{R}}^d))中,并且(p在 [\alpha /(\alpha -1),+\infty ]\) 和(\beta 在 (0,1)中)。作为应用,我们证明了时间非均质随机微分方程在 L^p([0,T];(L^p([0,T]; {{\mathcal {C}}}_b^{beta }({\mathbb R}}^d;{{\mathbb {R}}^d))\)中的漂移,并由\(\alpha \)-稳定过程驱动为\(\beta > 1-\alpha /2\)和\(p>2\alpha /(\alpha +2\beta -2)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Fokker-Planck-Kolmogorov equations with Hölder continuous drift

We study the fractional Fokker-Planck-Kolmogorov equation with the fractional index \(\alpha \in [1,2)\) and use a vector-valued Calderón-Zygmund theorem to obtain the existence and uniqueness of \(L^p([0,T];{{\mathcal {C}}}_b^{\alpha +\beta }({{\mathbb {R}}}^d))\cap W^{1,p}([0,T];{{\mathcal {C}}}_b^\beta ({{\mathbb {R}}}^d))\) solution under the assumptions that the drift coefficient and nonhomogeneous term are in \(L^p([0,T];{{\mathcal {C}}}_b^{\beta }({{\mathbb {R}}}^d))\) with \(p\in [\alpha /(\alpha -1),+\infty ]\) and \(\beta \in (0,1)\). As applications, we prove the unique strong solvability as well as Davie’s type uniqueness of time inhomogeneous stochastic differential equation with the drift in \(L^p([0,T];{{\mathcal {C}}}_b^{\beta }({\mathbb R}^d;{{\mathbb {R}}}^d))\) and driven by the \(\alpha \)-stable process for \(\beta > 1-\alpha /2\) and \(p>2\alpha /(\alpha +2\beta -2)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信