霍尔德连续漂移的分数福克-普朗克-科尔莫戈罗夫方程

IF 2.5 2区 数学 Q1 MATHEMATICS
Rongrong Tian, Jinlong Wei
{"title":"霍尔德连续漂移的分数福克-普朗克-科尔莫戈罗夫方程","authors":"Rongrong Tian, Jinlong Wei","doi":"10.1007/s13540-024-00309-w","DOIUrl":null,"url":null,"abstract":"<p>We study the fractional Fokker-Planck-Kolmogorov equation with the fractional index <span>\\(\\alpha \\in [1,2)\\)</span> and use a vector-valued Calderón-Zygmund theorem to obtain the existence and uniqueness of <span>\\(L^p([0,T];{{\\mathcal {C}}}_b^{\\alpha +\\beta }({{\\mathbb {R}}}^d))\\cap W^{1,p}([0,T];{{\\mathcal {C}}}_b^\\beta ({{\\mathbb {R}}}^d))\\)</span> solution under the assumptions that the drift coefficient and nonhomogeneous term are in <span>\\(L^p([0,T];{{\\mathcal {C}}}_b^{\\beta }({{\\mathbb {R}}}^d))\\)</span> with <span>\\(p\\in [\\alpha /(\\alpha -1),+\\infty ]\\)</span> and <span>\\(\\beta \\in (0,1)\\)</span>. As applications, we prove the unique strong solvability as well as Davie’s type uniqueness of time inhomogeneous stochastic differential equation with the drift in <span>\\(L^p([0,T];{{\\mathcal {C}}}_b^{\\beta }({\\mathbb R}^d;{{\\mathbb {R}}}^d))\\)</span> and driven by the <span>\\(\\alpha \\)</span>-stable process for <span>\\(\\beta &gt; 1-\\alpha /2\\)</span> and <span>\\(p&gt;2\\alpha /(\\alpha +2\\beta -2)\\)</span>.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"27 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Fokker-Planck-Kolmogorov equations with Hölder continuous drift\",\"authors\":\"Rongrong Tian, Jinlong Wei\",\"doi\":\"10.1007/s13540-024-00309-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the fractional Fokker-Planck-Kolmogorov equation with the fractional index <span>\\\\(\\\\alpha \\\\in [1,2)\\\\)</span> and use a vector-valued Calderón-Zygmund theorem to obtain the existence and uniqueness of <span>\\\\(L^p([0,T];{{\\\\mathcal {C}}}_b^{\\\\alpha +\\\\beta }({{\\\\mathbb {R}}}^d))\\\\cap W^{1,p}([0,T];{{\\\\mathcal {C}}}_b^\\\\beta ({{\\\\mathbb {R}}}^d))\\\\)</span> solution under the assumptions that the drift coefficient and nonhomogeneous term are in <span>\\\\(L^p([0,T];{{\\\\mathcal {C}}}_b^{\\\\beta }({{\\\\mathbb {R}}}^d))\\\\)</span> with <span>\\\\(p\\\\in [\\\\alpha /(\\\\alpha -1),+\\\\infty ]\\\\)</span> and <span>\\\\(\\\\beta \\\\in (0,1)\\\\)</span>. As applications, we prove the unique strong solvability as well as Davie’s type uniqueness of time inhomogeneous stochastic differential equation with the drift in <span>\\\\(L^p([0,T];{{\\\\mathcal {C}}}_b^{\\\\beta }({\\\\mathbb R}^d;{{\\\\mathbb {R}}}^d))\\\\)</span> and driven by the <span>\\\\(\\\\alpha \\\\)</span>-stable process for <span>\\\\(\\\\beta &gt; 1-\\\\alpha /2\\\\)</span> and <span>\\\\(p&gt;2\\\\alpha /(\\\\alpha +2\\\\beta -2)\\\\)</span>.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00309-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00309-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了分数指数为 \(\alpha \in [1,2)\) 的分数 Fokker-Planck-Kolmogorov 方程,并使用向量值 Calderón-Zygmund 定理得到了 \(L^p([0,T];{{\mathcal {C}}_b^{α +\beta }({{\mathbb {R}}^d))\cap W^{1,p}([0,T];{{/mathcal{C}}}_b^/beta({{/mathbb {R}}}^d)) 解,前提是漂移系数和非均质项都在\(L^p([0,T];{{mathcal{C}}}_b^{beta}({{mathbb{R}}^d))中,并且(p在 [\alpha /(\alpha -1),+\infty ]\) 和(\beta 在 (0,1)中)。作为应用,我们证明了时间非均质随机微分方程在 L^p([0,T];(L^p([0,T]; {{\mathcal {C}}}_b^{beta }({\mathbb R}}^d;{{\mathbb {R}}^d))\)中的漂移,并由\(\alpha \)-稳定过程驱动为\(\beta > 1-\alpha /2\)和\(p>2\alpha /(\alpha +2\beta -2)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Fokker-Planck-Kolmogorov equations with Hölder continuous drift

We study the fractional Fokker-Planck-Kolmogorov equation with the fractional index \(\alpha \in [1,2)\) and use a vector-valued Calderón-Zygmund theorem to obtain the existence and uniqueness of \(L^p([0,T];{{\mathcal {C}}}_b^{\alpha +\beta }({{\mathbb {R}}}^d))\cap W^{1,p}([0,T];{{\mathcal {C}}}_b^\beta ({{\mathbb {R}}}^d))\) solution under the assumptions that the drift coefficient and nonhomogeneous term are in \(L^p([0,T];{{\mathcal {C}}}_b^{\beta }({{\mathbb {R}}}^d))\) with \(p\in [\alpha /(\alpha -1),+\infty ]\) and \(\beta \in (0,1)\). As applications, we prove the unique strong solvability as well as Davie’s type uniqueness of time inhomogeneous stochastic differential equation with the drift in \(L^p([0,T];{{\mathcal {C}}}_b^{\beta }({\mathbb R}^d;{{\mathbb {R}}}^d))\) and driven by the \(\alpha \)-stable process for \(\beta > 1-\alpha /2\) and \(p>2\alpha /(\alpha +2\beta -2)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信