用于预测高温超导体的键敏感图神经网络

Liang Gu, Yang Liu, Pin Chen, Haiyou Huang, Ning Chen, Yang Li, Turab Lookman, Yutong Lu, Yanjing Su
{"title":"用于预测高温超导体的键敏感图神经网络","authors":"Liang Gu,&nbsp;Yang Liu,&nbsp;Pin Chen,&nbsp;Haiyou Huang,&nbsp;Ning Chen,&nbsp;Yang Li,&nbsp;Turab Lookman,&nbsp;Yutong Lu,&nbsp;Yanjing Su","doi":"10.1002/mgea.48","DOIUrl":null,"url":null,"abstract":"<p>Finding high temperature superconductors (HTS) has been a continuing challenge due to the difficulty in predicting the transition temperature (<i>T</i><sub>c</sub>) of superconductors. Recently, the efficiency of predicting <i>T</i><sub>c</sub> has been greatly improved via machine learning (ML). Unfortunately, prevailing ML models have not shown adequate generalization ability to find new HTS, yet. In this work, a graph neural network model is trained to predict the maximal <i>T</i><sub>c</sub> (<i>T</i><sub>c</sub><sup>max</sup>) of various materials. Our model reveals a close connection between <i>T</i><sub>c</sub><sup>max</sup> and chemical bonds. It suggests that shorter bond lengths are favored by high <i>T</i><sub>c</sub>, which is in coherence with previous domain knowledge. More importantly, it also indicates that chemical bonds consisting of some specific chemical elements are responsible for high <i>T</i><sub>c</sub>, which is new even to the human experts. It can provide a convenient guidance to the materials scientists in search of HTS.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.48","citationCount":"0","resultStr":"{\"title\":\"Bond sensitive graph neural networks for predicting high temperature superconductors\",\"authors\":\"Liang Gu,&nbsp;Yang Liu,&nbsp;Pin Chen,&nbsp;Haiyou Huang,&nbsp;Ning Chen,&nbsp;Yang Li,&nbsp;Turab Lookman,&nbsp;Yutong Lu,&nbsp;Yanjing Su\",\"doi\":\"10.1002/mgea.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Finding high temperature superconductors (HTS) has been a continuing challenge due to the difficulty in predicting the transition temperature (<i>T</i><sub>c</sub>) of superconductors. Recently, the efficiency of predicting <i>T</i><sub>c</sub> has been greatly improved via machine learning (ML). Unfortunately, prevailing ML models have not shown adequate generalization ability to find new HTS, yet. In this work, a graph neural network model is trained to predict the maximal <i>T</i><sub>c</sub> (<i>T</i><sub>c</sub><sup>max</sup>) of various materials. Our model reveals a close connection between <i>T</i><sub>c</sub><sup>max</sup> and chemical bonds. It suggests that shorter bond lengths are favored by high <i>T</i><sub>c</sub>, which is in coherence with previous domain knowledge. More importantly, it also indicates that chemical bonds consisting of some specific chemical elements are responsible for high <i>T</i><sub>c</sub>, which is new even to the human experts. It can provide a convenient guidance to the materials scientists in search of HTS.</p>\",\"PeriodicalId\":100889,\"journal\":{\"name\":\"Materials Genome Engineering Advances\",\"volume\":\"2 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.48\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Genome Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mgea.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于超导体的转变温度(Tc)难以预测,因此寻找高温超导体(HTS)一直是一项挑战。最近,通过机器学习(ML)预测 Tc 的效率大大提高。遗憾的是,目前流行的 ML 模型还没有显示出足够的泛化能力来发现新的 HTS。在这项工作中,我们训练了一个图神经网络模型来预测各种材料的最大 Tc(Tcmax)。我们的模型揭示了 Tcmax 与化学键之间的密切联系。它表明,较短的化学键长度更受高 Tc 的青睐,这与之前的领域知识是一致的。更重要的是,它还表明由某些特定化学元素组成的化学键是高 Tc 的原因,这对人类专家来说也是全新的。它可以为材料科学家寻找 HTS 提供方便的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bond sensitive graph neural networks for predicting high temperature superconductors

Bond sensitive graph neural networks for predicting high temperature superconductors

Finding high temperature superconductors (HTS) has been a continuing challenge due to the difficulty in predicting the transition temperature (Tc) of superconductors. Recently, the efficiency of predicting Tc has been greatly improved via machine learning (ML). Unfortunately, prevailing ML models have not shown adequate generalization ability to find new HTS, yet. In this work, a graph neural network model is trained to predict the maximal Tc (Tcmax) of various materials. Our model reveals a close connection between Tcmax and chemical bonds. It suggests that shorter bond lengths are favored by high Tc, which is in coherence with previous domain knowledge. More importantly, it also indicates that chemical bonds consisting of some specific chemical elements are responsible for high Tc, which is new even to the human experts. It can provide a convenient guidance to the materials scientists in search of HTS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信