Dongya Zhu , Quanyou Liu , Jingbin Wang , Shoutao Peng , Donghua You , Juntao Zhang , Qian Ding , Chongyang Wu
{"title":"中国西北部塔里木盆地超深层碳酸盐岩的断层流体蚀变差异与储层性质","authors":"Dongya Zhu , Quanyou Liu , Jingbin Wang , Shoutao Peng , Donghua You , Juntao Zhang , Qian Ding , Chongyang Wu","doi":"10.1016/j.apgeochem.2024.106084","DOIUrl":null,"url":null,"abstract":"<div><p>The development of high-quality carbonate hydrocarbon reservoirs in the ultra-deep (7000–10000 m) Lower Paleozoic strata of the Tarim Basin was substantially related to tectonic evolution, strike-slip faults, and diagenetic fluids. Detailed studies of the influences of tectonic evolution and strike-slip faults on the properties of diagenetic fluids and the development mechanisms of ultradeep carbonate reservoirs under the control of both faults and fluids are required to identify high quality reservoirs. In this study, end-member geochemical indicators of meteoric water, hydrothermal fluid, and formation fluid were constructed based on typical diagenetic mineral and geochemical data obtained from representative wells. Meteoric karst associated with strong tectonic uplift was the main diagenetic event along strike-slip faults in the Tahe area. The Shunbei area was generally affected by buried formation water, and locally by weak meteoric water or hydrothermal fluids. The Tazhong, Shunnan, and Gucheng areas were predominantly affected by strong hydrothermal fluids along strike-slip faults associated with strong volcanic activity, while some wells, such as TZ12, reveal the influence of thermochemical sulfate reduction (TSR). Differences in fault fluid types and properties resulted in differential development of ultra-deep carbonate reservoirs among the different areas. In the Tahe area, meteoric water alteration along faults formed karst fracture-cavity reservoirs. In the Shunbei area, fault-cavity carbonate reservoirs were formed by strong strike-slip faults, whereas fluid alteration was weak. Hydrothermal dissolution reservoir in the Tazhong area, hydrothermal silicification reservoir in the Shunnan area, and hydrothermal dolomitization reservoir in the Gucheng area are developed, respectively.</p></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"170 ","pages":"Article 106084"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential fault-fluid alterations and reservoir properties in ultra-deep carbonates in the Tarim Basin, NW China\",\"authors\":\"Dongya Zhu , Quanyou Liu , Jingbin Wang , Shoutao Peng , Donghua You , Juntao Zhang , Qian Ding , Chongyang Wu\",\"doi\":\"10.1016/j.apgeochem.2024.106084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of high-quality carbonate hydrocarbon reservoirs in the ultra-deep (7000–10000 m) Lower Paleozoic strata of the Tarim Basin was substantially related to tectonic evolution, strike-slip faults, and diagenetic fluids. Detailed studies of the influences of tectonic evolution and strike-slip faults on the properties of diagenetic fluids and the development mechanisms of ultradeep carbonate reservoirs under the control of both faults and fluids are required to identify high quality reservoirs. In this study, end-member geochemical indicators of meteoric water, hydrothermal fluid, and formation fluid were constructed based on typical diagenetic mineral and geochemical data obtained from representative wells. Meteoric karst associated with strong tectonic uplift was the main diagenetic event along strike-slip faults in the Tahe area. The Shunbei area was generally affected by buried formation water, and locally by weak meteoric water or hydrothermal fluids. The Tazhong, Shunnan, and Gucheng areas were predominantly affected by strong hydrothermal fluids along strike-slip faults associated with strong volcanic activity, while some wells, such as TZ12, reveal the influence of thermochemical sulfate reduction (TSR). Differences in fault fluid types and properties resulted in differential development of ultra-deep carbonate reservoirs among the different areas. In the Tahe area, meteoric water alteration along faults formed karst fracture-cavity reservoirs. In the Shunbei area, fault-cavity carbonate reservoirs were formed by strong strike-slip faults, whereas fluid alteration was weak. Hydrothermal dissolution reservoir in the Tazhong area, hydrothermal silicification reservoir in the Shunnan area, and hydrothermal dolomitization reservoir in the Gucheng area are developed, respectively.</p></div>\",\"PeriodicalId\":8064,\"journal\":{\"name\":\"Applied Geochemistry\",\"volume\":\"170 \",\"pages\":\"Article 106084\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0883292724001896\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292724001896","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Differential fault-fluid alterations and reservoir properties in ultra-deep carbonates in the Tarim Basin, NW China
The development of high-quality carbonate hydrocarbon reservoirs in the ultra-deep (7000–10000 m) Lower Paleozoic strata of the Tarim Basin was substantially related to tectonic evolution, strike-slip faults, and diagenetic fluids. Detailed studies of the influences of tectonic evolution and strike-slip faults on the properties of diagenetic fluids and the development mechanisms of ultradeep carbonate reservoirs under the control of both faults and fluids are required to identify high quality reservoirs. In this study, end-member geochemical indicators of meteoric water, hydrothermal fluid, and formation fluid were constructed based on typical diagenetic mineral and geochemical data obtained from representative wells. Meteoric karst associated with strong tectonic uplift was the main diagenetic event along strike-slip faults in the Tahe area. The Shunbei area was generally affected by buried formation water, and locally by weak meteoric water or hydrothermal fluids. The Tazhong, Shunnan, and Gucheng areas were predominantly affected by strong hydrothermal fluids along strike-slip faults associated with strong volcanic activity, while some wells, such as TZ12, reveal the influence of thermochemical sulfate reduction (TSR). Differences in fault fluid types and properties resulted in differential development of ultra-deep carbonate reservoirs among the different areas. In the Tahe area, meteoric water alteration along faults formed karst fracture-cavity reservoirs. In the Shunbei area, fault-cavity carbonate reservoirs were formed by strong strike-slip faults, whereas fluid alteration was weak. Hydrothermal dissolution reservoir in the Tazhong area, hydrothermal silicification reservoir in the Shunnan area, and hydrothermal dolomitization reservoir in the Gucheng area are developed, respectively.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.