{"title":"论三维伊辛模型的不可控性","authors":"Wojciech Niedziółka, Jacek Wojtkiewicz","doi":"10.1016/S0034-4877(24)00037-5","DOIUrl":null,"url":null,"abstract":"<div><p>It is well known that the partition function of two-dimensional Ising model can be expressed as a Grassmann integral over the action bilinear in Grassmann variables. The key aspect of the proof of this equivalence is to show that all polygons, appearing in Grassmann integration, enter with fixed sign. For three-dimensional model, the partition function can also be expressed by Grassmann integral. However, the action resulting from low-temperature (L-T) expansion contains quartic terms, which do not allow explicit computation of the integral. We wanted to check — apparently not explored — the possibility that using the high-temperature (H-T) expansion would result in action with only bilinear terms (in two dimensions, L-T and H-T expansions are equivalent, but in three dimensions, they differ from each other). It turned out, however, that polygons obtained by Grassmann integration are not of fixed sign for any ordering of Grassmann variables on sites. This way, it is not possible to express the partition function of three-dimensional Ising model as a Grassmann integral over bilinear action.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On nonintegrability of three-dimensional Ising model\",\"authors\":\"Wojciech Niedziółka, Jacek Wojtkiewicz\",\"doi\":\"10.1016/S0034-4877(24)00037-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is well known that the partition function of two-dimensional Ising model can be expressed as a Grassmann integral over the action bilinear in Grassmann variables. The key aspect of the proof of this equivalence is to show that all polygons, appearing in Grassmann integration, enter with fixed sign. For three-dimensional model, the partition function can also be expressed by Grassmann integral. However, the action resulting from low-temperature (L-T) expansion contains quartic terms, which do not allow explicit computation of the integral. We wanted to check — apparently not explored — the possibility that using the high-temperature (H-T) expansion would result in action with only bilinear terms (in two dimensions, L-T and H-T expansions are equivalent, but in three dimensions, they differ from each other). It turned out, however, that polygons obtained by Grassmann integration are not of fixed sign for any ordering of Grassmann variables on sites. This way, it is not possible to express the partition function of three-dimensional Ising model as a Grassmann integral over bilinear action.</p></div>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034487724000375\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487724000375","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
On nonintegrability of three-dimensional Ising model
It is well known that the partition function of two-dimensional Ising model can be expressed as a Grassmann integral over the action bilinear in Grassmann variables. The key aspect of the proof of this equivalence is to show that all polygons, appearing in Grassmann integration, enter with fixed sign. For three-dimensional model, the partition function can also be expressed by Grassmann integral. However, the action resulting from low-temperature (L-T) expansion contains quartic terms, which do not allow explicit computation of the integral. We wanted to check — apparently not explored — the possibility that using the high-temperature (H-T) expansion would result in action with only bilinear terms (in two dimensions, L-T and H-T expansions are equivalent, but in three dimensions, they differ from each other). It turned out, however, that polygons obtained by Grassmann integration are not of fixed sign for any ordering of Grassmann variables on sites. This way, it is not possible to express the partition function of three-dimensional Ising model as a Grassmann integral over bilinear action.
期刊介绍:
Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.