Jhon Vidarte , Yrina Vera-Damián , Walter Gonzales
{"title":"恒星型哈密顿系统中的周期轨道","authors":"Jhon Vidarte , Yrina Vera-Damián , Walter Gonzales","doi":"10.1016/j.physd.2024.134261","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the existence of periodic orbits in a perturbed Hamiltonian system of stellar type in 1:1 resonance. The perturbation consists of a potential of degree four with two real parameters. We determine six families of periodic orbits using reduction and averaging theories. Also, we characterize the stability of these orbits and their bifurcation curves in terms of the parameters. Finally, we show a complete picture of the choreographies of critical points originating the periodic orbits.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic orbits in a Hamiltonian system of stellar type\",\"authors\":\"Jhon Vidarte , Yrina Vera-Damián , Walter Gonzales\",\"doi\":\"10.1016/j.physd.2024.134261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the existence of periodic orbits in a perturbed Hamiltonian system of stellar type in 1:1 resonance. The perturbation consists of a potential of degree four with two real parameters. We determine six families of periodic orbits using reduction and averaging theories. Also, we characterize the stability of these orbits and their bifurcation curves in terms of the parameters. Finally, we show a complete picture of the choreographies of critical points originating the periodic orbits.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924002124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Periodic orbits in a Hamiltonian system of stellar type
We investigate the existence of periodic orbits in a perturbed Hamiltonian system of stellar type in 1:1 resonance. The perturbation consists of a potential of degree four with two real parameters. We determine six families of periodic orbits using reduction and averaging theories. Also, we characterize the stability of these orbits and their bifurcation curves in terms of the parameters. Finally, we show a complete picture of the choreographies of critical points originating the periodic orbits.