论缓慢变化的周期性介质中的无气燃烧动力学

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS
Amanda Matson , Leonid Kagan , Claude-Michel Brauner , Gregory Sivashinsky , Peter V. Gordon
{"title":"论缓慢变化的周期性介质中的无气燃烧动力学","authors":"Amanda Matson ,&nbsp;Leonid Kagan ,&nbsp;Claude-Michel Brauner ,&nbsp;Gregory Sivashinsky ,&nbsp;Peter V. Gordon","doi":"10.1016/j.combustflame.2024.113573","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider a classical model of gasless combustion in a one dimensional formulation under the assumption of ignition temperature kinetics. We study the propagation of flame fronts in this model when the initial distribution of the solid fuel is a spatially periodic function that varies on a large scale. It is shown that in certain parametric regimes the model supports periodic traveling fronts. An accurate asymptotic formula for the velocity of the flame front is derived and studied. The stability of periodic fronts is also explored, and a critical condition in terms of parameters of the problem is derived. It is also shown that the instability of periodic fronts, in certain parametric regimes, results in a propagation-extinction-conduction-reignition pattern which is studied numerically.</p><p>Novelty and significance statement: This work provides a closed form asymptotic description of periodic traveling fronts in a gasless combustion model with step-wise ignition temperature kinetics with a slowly varying concentration field. The stability analysis is performed, and the range of applicability of asymptotic formulas is given. A new propagation-extinction-conduction-reignition regime is identified. This regime emerges exclusively due to periodicity of the concentration field.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010218024002827/pdfft?md5=7a20bd668ecfd7d4839b9a3431289541&pid=1-s2.0-S0010218024002827-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On dynamics of gasless combustion in slowly varying periodic media\",\"authors\":\"Amanda Matson ,&nbsp;Leonid Kagan ,&nbsp;Claude-Michel Brauner ,&nbsp;Gregory Sivashinsky ,&nbsp;Peter V. Gordon\",\"doi\":\"10.1016/j.combustflame.2024.113573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we consider a classical model of gasless combustion in a one dimensional formulation under the assumption of ignition temperature kinetics. We study the propagation of flame fronts in this model when the initial distribution of the solid fuel is a spatially periodic function that varies on a large scale. It is shown that in certain parametric regimes the model supports periodic traveling fronts. An accurate asymptotic formula for the velocity of the flame front is derived and studied. The stability of periodic fronts is also explored, and a critical condition in terms of parameters of the problem is derived. It is also shown that the instability of periodic fronts, in certain parametric regimes, results in a propagation-extinction-conduction-reignition pattern which is studied numerically.</p><p>Novelty and significance statement: This work provides a closed form asymptotic description of periodic traveling fronts in a gasless combustion model with step-wise ignition temperature kinetics with a slowly varying concentration field. The stability analysis is performed, and the range of applicability of asymptotic formulas is given. A new propagation-extinction-conduction-reignition regime is identified. This regime emerges exclusively due to periodicity of the concentration field.</p></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0010218024002827/pdfft?md5=7a20bd668ecfd7d4839b9a3431289541&pid=1-s2.0-S0010218024002827-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218024002827\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024002827","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一个经典的无气燃烧模型,该模型是在点火温度动力学假设下的一维模型。我们研究了当固体燃料的初始分布是一个在大尺度上变化的空间周期函数时,火焰前沿在该模型中的传播。结果表明,在某些参数情况下,该模型支持周期性的行进前沿。推导并研究了火焰前沿速度的精确渐近公式。此外,还探讨了周期性前沿的稳定性,并得出了问题参数的临界条件。研究还表明,在某些参数条件下,周期性前沿的不稳定性会导致传播-熄灭-传导-复燃模式,并对该模式进行了数值研究:这项工作提供了一个无气燃烧模型中周期性行进前沿的封闭形式渐近描述,该模型具有步进式点火温度动力学和缓慢变化的浓度场。进行了稳定性分析,并给出了渐近公式的适用范围。确定了一个新的传播-熄灭-传导-复燃机制。该机制的出现完全是由于浓度场的周期性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On dynamics of gasless combustion in slowly varying periodic media

In this paper we consider a classical model of gasless combustion in a one dimensional formulation under the assumption of ignition temperature kinetics. We study the propagation of flame fronts in this model when the initial distribution of the solid fuel is a spatially periodic function that varies on a large scale. It is shown that in certain parametric regimes the model supports periodic traveling fronts. An accurate asymptotic formula for the velocity of the flame front is derived and studied. The stability of periodic fronts is also explored, and a critical condition in terms of parameters of the problem is derived. It is also shown that the instability of periodic fronts, in certain parametric regimes, results in a propagation-extinction-conduction-reignition pattern which is studied numerically.

Novelty and significance statement: This work provides a closed form asymptotic description of periodic traveling fronts in a gasless combustion model with step-wise ignition temperature kinetics with a slowly varying concentration field. The stability analysis is performed, and the range of applicability of asymptotic formulas is given. A new propagation-extinction-conduction-reignition regime is identified. This regime emerges exclusively due to periodicity of the concentration field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信