{"title":"伞面几何建模","authors":"Takuya Terahara, Soma Nishikawa, Ayame Suzuki, Kenji Takizawa, Takashi Maekawa","doi":"10.1016/j.cad.2024.103750","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present a novel method for modeling the canopy surface of an umbrella. Our approach involves representing the area between the ribs on the canopy as a trimmed bilinear patch. Furthermore, we conduct an in-depth exploration of various differential geometric properties of the umbrella surface. We introduce a method for unfolding the canopy surface onto a plane, which serves as a valuable technique for fabricating a cardboard template to accurately cut canopy fabrics. To validate the effectiveness of our geometric modeling method, we apply it to several umbrella models, showcasing its practical application and benefits.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"175 ","pages":"Article 103750"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010448524000770/pdfft?md5=4f2bf7c788fd927b1bf2816ac001742b&pid=1-s2.0-S0010448524000770-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Geometric Modeling of Umbrella Surfaces\",\"authors\":\"Takuya Terahara, Soma Nishikawa, Ayame Suzuki, Kenji Takizawa, Takashi Maekawa\",\"doi\":\"10.1016/j.cad.2024.103750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we present a novel method for modeling the canopy surface of an umbrella. Our approach involves representing the area between the ribs on the canopy as a trimmed bilinear patch. Furthermore, we conduct an in-depth exploration of various differential geometric properties of the umbrella surface. We introduce a method for unfolding the canopy surface onto a plane, which serves as a valuable technique for fabricating a cardboard template to accurately cut canopy fabrics. To validate the effectiveness of our geometric modeling method, we apply it to several umbrella models, showcasing its practical application and benefits.</p></div>\",\"PeriodicalId\":50632,\"journal\":{\"name\":\"Computer-Aided Design\",\"volume\":\"175 \",\"pages\":\"Article 103750\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0010448524000770/pdfft?md5=4f2bf7c788fd927b1bf2816ac001742b&pid=1-s2.0-S0010448524000770-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010448524000770\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524000770","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
In this study, we present a novel method for modeling the canopy surface of an umbrella. Our approach involves representing the area between the ribs on the canopy as a trimmed bilinear patch. Furthermore, we conduct an in-depth exploration of various differential geometric properties of the umbrella surface. We introduce a method for unfolding the canopy surface onto a plane, which serves as a valuable technique for fabricating a cardboard template to accurately cut canopy fabrics. To validate the effectiveness of our geometric modeling method, we apply it to several umbrella models, showcasing its practical application and benefits.
期刊介绍:
Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design.
Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.