分形-分数算子研究与实例

Rabha W. Ibrahim
{"title":"分形-分数算子研究与实例","authors":"Rabha W. Ibrahim","doi":"10.1016/j.exco.2024.100148","DOIUrl":null,"url":null,"abstract":"<div><p>By using the generalization of the gamma function (<span><math><mi>p</mi></math></span>-gamma function: <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mo>.</mo><mo>)</mo></mrow></mrow></math></span>), we introduce a generalization of the fractal–fractional calculus which is called <span><math><mi>p</mi></math></span>-fractal fractional calculus. We extend the proposed operators into the symmetric complex domain, specifically the open unit disk. Normalization for each operator is formulated. This allows us to explore the most important geometric properties. Examples are illustrated including the basic power functions.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100148"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000144/pdfft?md5=eb86f085d4d25f908eda02f5243db74c&pid=1-s2.0-S2666657X24000144-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Studies in fractal–fractional operators with examples\",\"authors\":\"Rabha W. Ibrahim\",\"doi\":\"10.1016/j.exco.2024.100148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By using the generalization of the gamma function (<span><math><mi>p</mi></math></span>-gamma function: <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mo>.</mo><mo>)</mo></mrow></mrow></math></span>), we introduce a generalization of the fractal–fractional calculus which is called <span><math><mi>p</mi></math></span>-fractal fractional calculus. We extend the proposed operators into the symmetric complex domain, specifically the open unit disk. Normalization for each operator is formulated. This allows us to explore the most important geometric properties. Examples are illustrated including the basic power functions.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"6 \",\"pages\":\"Article 100148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666657X24000144/pdfft?md5=eb86f085d4d25f908eda02f5243db74c&pid=1-s2.0-S2666657X24000144-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X24000144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X24000144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用伽马函数的广义化(p-伽马函数:Γp(.)),我们引入了分形-分形微积分的广义,称为 p 分形-分形微积分。我们将提出的算子扩展到对称复数域,特别是开放单位盘。我们对每个算子进行了归一化处理。这使我们能够探索最重要的几何特性。示例包括基本幂函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studies in fractal–fractional operators with examples

By using the generalization of the gamma function (p-gamma function: Γp(.)), we introduce a generalization of the fractal–fractional calculus which is called p-fractal fractional calculus. We extend the proposed operators into the symmetric complex domain, specifically the open unit disk. Normalization for each operator is formulated. This allows us to explore the most important geometric properties. Examples are illustrated including the basic power functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信