乔丹-摩尔-吉布森-汤普森方程中的 L∞ 放大

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vanja Nikolić , Michael Winkler
{"title":"乔丹-摩尔-吉布森-汤普森方程中的 L∞ 放大","authors":"Vanja Nikolić ,&nbsp;Michael Winkler","doi":"10.1016/j.na.2024.113600","DOIUrl":null,"url":null,"abstract":"<div><p>The Jordan–Moore–Gibson–Thompson equation <span><span><span><math><mrow><mi>τ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>α</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>=</mo><mi>β</mi><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>γ</mi><mi>Δ</mi><mi>u</mi><mo>+</mo><msub><mrow><mrow><mo>(</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub></mrow></math></span></span></span>is considered in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≤</mo><mn>3</mn></mrow></math></span>, where <span><math><mrow><mi>τ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>β</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, and <span><math><mrow><mi>α</mi><mo>∈</mo><mi>R</mi></mrow></math></span>.</p><p>Firstly, it is seen that under the assumption that <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> is such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span>, gradient blow-up phenomena cannot occur in the sense that for any appropriately regular initial data, within a suitable framework of strong solvability, an associated Dirichlet type initial–boundary value problem admits a unique solution <span><math><mi>u</mi></math></span> on a maximal time interval <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow></math></span> which is such that <span><span><span><math><mrow><mtext>if</mtext><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>&lt;</mo><mi>∞</mi><mo>,</mo><mspace></mspace><mtext>then</mtext><mspace></mspace><munder><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi><mo>↗</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></munder><msub><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>=</mo><mi>∞</mi><mo>.</mo><mspace></mspace><mspace></mspace><mrow><mo>(</mo><mo>⋆</mo><mo>)</mo></mrow></mrow></math></span></span></span>This is used to, secondly, make sure that if additionally <span><math><mi>f</mi></math></span> is convex and grows superlinearly in the sense that <span><span><span><math><mrow><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>≥</mo><mn>0</mn><mtext>on</mtext><mi>R</mi><mtext>,</mtext><mspace></mspace><mfrac><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow><mrow><mi>ξ</mi></mrow></mfrac><mo>→</mo><mo>+</mo><mi>∞</mi><mspace></mspace><mtext>as</mtext><mi>ξ</mi><mo>→</mo><mo>+</mo><mi>∞</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><msubsup><mrow><mo>∫</mo></mrow><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mi>∞</mi></mrow></msubsup><mfrac><mrow><mi>d</mi><mi>ξ</mi></mrow><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></mfrac><mo>&lt;</mo><mi>∞</mi><mspace></mspace><mtext>for some</mtext><msub><mrow><mi>ξ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn><mtext>,</mtext></mrow></math></span></span></span>then for some initial data the above solution must undergo some finite-time <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> blow-up in the style described in (<span><math><mo>⋆</mo></math></span>).</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001196/pdfft?md5=958a8da5d648564aa56ba997c9422290&pid=1-s2.0-S0362546X24001196-main.pdf","citationCount":"0","resultStr":"{\"title\":\"L∞ blow-up in the Jordan–Moore–Gibson–Thompson equation\",\"authors\":\"Vanja Nikolić ,&nbsp;Michael Winkler\",\"doi\":\"10.1016/j.na.2024.113600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Jordan–Moore–Gibson–Thompson equation <span><span><span><math><mrow><mi>τ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>α</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>=</mo><mi>β</mi><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>γ</mi><mi>Δ</mi><mi>u</mi><mo>+</mo><msub><mrow><mrow><mo>(</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub></mrow></math></span></span></span>is considered in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≤</mo><mn>3</mn></mrow></math></span>, where <span><math><mrow><mi>τ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>β</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, and <span><math><mrow><mi>α</mi><mo>∈</mo><mi>R</mi></mrow></math></span>.</p><p>Firstly, it is seen that under the assumption that <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> is such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span>, gradient blow-up phenomena cannot occur in the sense that for any appropriately regular initial data, within a suitable framework of strong solvability, an associated Dirichlet type initial–boundary value problem admits a unique solution <span><math><mi>u</mi></math></span> on a maximal time interval <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow></math></span> which is such that <span><span><span><math><mrow><mtext>if</mtext><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>&lt;</mo><mi>∞</mi><mo>,</mo><mspace></mspace><mtext>then</mtext><mspace></mspace><munder><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi><mo>↗</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></munder><msub><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>=</mo><mi>∞</mi><mo>.</mo><mspace></mspace><mspace></mspace><mrow><mo>(</mo><mo>⋆</mo><mo>)</mo></mrow></mrow></math></span></span></span>This is used to, secondly, make sure that if additionally <span><math><mi>f</mi></math></span> is convex and grows superlinearly in the sense that <span><span><span><math><mrow><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>≥</mo><mn>0</mn><mtext>on</mtext><mi>R</mi><mtext>,</mtext><mspace></mspace><mfrac><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow><mrow><mi>ξ</mi></mrow></mfrac><mo>→</mo><mo>+</mo><mi>∞</mi><mspace></mspace><mtext>as</mtext><mi>ξ</mi><mo>→</mo><mo>+</mo><mi>∞</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><msubsup><mrow><mo>∫</mo></mrow><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mi>∞</mi></mrow></msubsup><mfrac><mrow><mi>d</mi><mi>ξ</mi></mrow><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></mfrac><mo>&lt;</mo><mi>∞</mi><mspace></mspace><mtext>for some</mtext><msub><mrow><mi>ξ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn><mtext>,</mtext></mrow></math></span></span></span>then for some initial data the above solution must undergo some finite-time <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> blow-up in the style described in (<span><math><mo>⋆</mo></math></span>).</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001196/pdfft?md5=958a8da5d648564aa56ba997c9422290&pid=1-s2.0-S0362546X24001196-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001196\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001196","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在n≤3的平滑有界域Ω⊂Rn中考虑Jordan-Moore-Gibson-Thompson方程τuttt+αutt=βΔut+γΔu+(f(u))tt,其中τ>0,β>0,γ>0,α∈R。首先,我们可以看到,在假定 f∈C3(R) 使得 f(0)=0 的条件下,梯度吹大现象不会发生,即对于任何适当规则的初始数据,在一个合适的强可解性框架内,相关的德里赫特型初界值问题在最大时间区间(0,Tmax)上有一个唯一的解 u,该解使得 ifTmax<;∞,则lim suptTmax‖u(⋅,t)‖L∞(Ω)=∞。(⋆)This is used to, secondly, make sure that if additionally f is convex and grows superlinearly in the sense that f′′≥0onR, f(ξ)ξ→+∞asξ→+∞and∫ξ0∞dξf(ξ)<;∞对于某些ξ0>0,则对于某些初始数据,上述解必然会经历如(⋆)所述的有限时间 L∞ 放大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L∞ blow-up in the Jordan–Moore–Gibson–Thompson equation

The Jordan–Moore–Gibson–Thompson equation τuttt+αutt=βΔut+γΔu+(f(u))ttis considered in a smoothly bounded domain ΩRn with n3, where τ>0,β>0,γ>0, and αR.

Firstly, it is seen that under the assumption that fC3(R) is such that f(0)=0, gradient blow-up phenomena cannot occur in the sense that for any appropriately regular initial data, within a suitable framework of strong solvability, an associated Dirichlet type initial–boundary value problem admits a unique solution u on a maximal time interval (0,Tmax) which is such that ifTmax<,thenlim suptTmaxu(,t)L(Ω)=.()This is used to, secondly, make sure that if additionally f is convex and grows superlinearly in the sense that f0onR,f(ξ)ξ+asξ+andξ0dξf(ξ)<for someξ0>0,then for some initial data the above solution must undergo some finite-time L blow-up in the style described in ().

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信