2-X 和 2-R 平面缆索驱动张力启发式机械手的优化设计与比较

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Vimalesh Muralidharan , Philippe Wenger , Christine Chevallereau
{"title":"2-X 和 2-R 平面缆索驱动张力启发式机械手的优化设计与比较","authors":"Vimalesh Muralidharan ,&nbsp;Philippe Wenger ,&nbsp;Christine Chevallereau","doi":"10.1016/j.mechmachtheory.2024.105721","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we perform the design optimization and comparison of two tensegrity-inspired manipulators, composed of two anti-parallelogram (X) joints and two revolute (R) joints, respectively. These manipulators are equipped with springs and are actuated remotely with four cables each. In our recent article (Muralidharan et al., 2024), the conditions for the mechanical feasibility of springs and bars have been discussed for the two manipulators, followed by the computation of their stable wrench-feasible workspace (SWFW). Building on that work, in the proposed paper, we design the 2-X and 2-R manipulators to carry a given point mass payload over a disk of a specified radius while minimizing their maximal actuation force, moving mass, and size. We present the Pareto optimal fronts for the two manipulators and compare several designs from them. Then, we study the variation of the chosen objectives for different payload and disk radius specifications for the two manipulators to determine which one is better under what circumstances. Finally, we illustrate that the proposed optimization scheme can also be applied to other design scenarios with minimal changes.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal design and comparison of 2-X and 2-R planar cable-driven tensegrity-inspired manipulators\",\"authors\":\"Vimalesh Muralidharan ,&nbsp;Philippe Wenger ,&nbsp;Christine Chevallereau\",\"doi\":\"10.1016/j.mechmachtheory.2024.105721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we perform the design optimization and comparison of two tensegrity-inspired manipulators, composed of two anti-parallelogram (X) joints and two revolute (R) joints, respectively. These manipulators are equipped with springs and are actuated remotely with four cables each. In our recent article (Muralidharan et al., 2024), the conditions for the mechanical feasibility of springs and bars have been discussed for the two manipulators, followed by the computation of their stable wrench-feasible workspace (SWFW). Building on that work, in the proposed paper, we design the 2-X and 2-R manipulators to carry a given point mass payload over a disk of a specified radius while minimizing their maximal actuation force, moving mass, and size. We present the Pareto optimal fronts for the two manipulators and compare several designs from them. Then, we study the variation of the chosen objectives for different payload and disk radius specifications for the two manipulators to determine which one is better under what circumstances. Finally, we illustrate that the proposed optimization scheme can also be applied to other design scenarios with minimal changes.</p></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24001484\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24001484","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们对分别由两个反平行四边形(X)关节和两个反卷(R)关节组成的两个张力启发机械手进行了设计优化和比较。这些机械手配备有弹簧,并分别由四根电缆远程驱动。在我们最近的文章(Muralidharan 等人,2024 年)中,我们讨论了这两个机械手的弹簧和杆的机械可行性条件,随后计算了它们的稳定扳手可行工作空间 (SWFW)。在上述工作的基础上,我们在本文中设计了 2-X 和 2-R 机械手,以便在指定半径的圆盘上搬运给定的点质量有效载荷,同时使其最大驱动力、移动质量和尺寸最小化。我们提出了这两种机械手的帕累托最优前沿,并对其中的几种设计进行了比较。然后,我们研究了两种机械手在不同有效载荷和圆盘半径规格下所选目标的变化情况,以确定在什么情况下哪一种更好。最后,我们说明了所提出的优化方案也可应用于其他设计方案,只需做最小的改动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal design and comparison of 2-X and 2-R planar cable-driven tensegrity-inspired manipulators

In this paper, we perform the design optimization and comparison of two tensegrity-inspired manipulators, composed of two anti-parallelogram (X) joints and two revolute (R) joints, respectively. These manipulators are equipped with springs and are actuated remotely with four cables each. In our recent article (Muralidharan et al., 2024), the conditions for the mechanical feasibility of springs and bars have been discussed for the two manipulators, followed by the computation of their stable wrench-feasible workspace (SWFW). Building on that work, in the proposed paper, we design the 2-X and 2-R manipulators to carry a given point mass payload over a disk of a specified radius while minimizing their maximal actuation force, moving mass, and size. We present the Pareto optimal fronts for the two manipulators and compare several designs from them. Then, we study the variation of the chosen objectives for different payload and disk radius specifications for the two manipulators to determine which one is better under what circumstances. Finally, we illustrate that the proposed optimization scheme can also be applied to other design scenarios with minimal changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信