Shahid A. Hasib , S. Islam , Md F. Ali , Subrata. K. Sarker , Li Li , Md Mehedi Hasan , Dip K. Saha
{"title":"提高锂离子电池剩余使用寿命的预测精度:带有蝙蝠优化器的深度学习方法","authors":"Shahid A. Hasib , S. Islam , Md F. Ali , Subrata. K. Sarker , Li Li , Md Mehedi Hasan , Dip K. Saha","doi":"10.1016/j.fub.2024.100003","DOIUrl":null,"url":null,"abstract":"<div><p>Remaining Useful Life (RUL) prediction in lithium-ion batteries is crucial for assessing battery performance. Despite the popularity of deep learning methods for RUL prediction, their complex architectures often pose challenges in interpretation and resource consumption. We propose a novel approach that combines the interpretability of a convolutional neural network (CNN) with the efficiency of a bat-based optimizer. CNN extracts battery data features and characterizes degradation kinetics, while the optimizer refines CNN parameters. Tested on NASA PCoE data, our method achieves exceptional results with minimal computational burden and fewer parameters. It outperforms traditional approaches, yielding an <strong>R2-score</strong> of <strong>0.9987120</strong>, an <strong>MAE</strong> of <strong>0.004397067 Ah</strong>, and a low <strong>RMSE</strong> of <strong>0.00656 Ah</strong>. The proposed model outperforms traditional deep learning models, as confirmed by comparative analysis.</p></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"2 ","pages":"Article 100003"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950264024000030/pdfft?md5=be1fc3a71e46f09dd45d43a2d6ef742b&pid=1-s2.0-S2950264024000030-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing prediction accuracy of Remaining Useful Life in lithium-ion batteries: A deep learning approach with Bat optimizer\",\"authors\":\"Shahid A. Hasib , S. Islam , Md F. Ali , Subrata. K. Sarker , Li Li , Md Mehedi Hasan , Dip K. Saha\",\"doi\":\"10.1016/j.fub.2024.100003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Remaining Useful Life (RUL) prediction in lithium-ion batteries is crucial for assessing battery performance. Despite the popularity of deep learning methods for RUL prediction, their complex architectures often pose challenges in interpretation and resource consumption. We propose a novel approach that combines the interpretability of a convolutional neural network (CNN) with the efficiency of a bat-based optimizer. CNN extracts battery data features and characterizes degradation kinetics, while the optimizer refines CNN parameters. Tested on NASA PCoE data, our method achieves exceptional results with minimal computational burden and fewer parameters. It outperforms traditional approaches, yielding an <strong>R2-score</strong> of <strong>0.9987120</strong>, an <strong>MAE</strong> of <strong>0.004397067 Ah</strong>, and a low <strong>RMSE</strong> of <strong>0.00656 Ah</strong>. The proposed model outperforms traditional deep learning models, as confirmed by comparative analysis.</p></div>\",\"PeriodicalId\":100560,\"journal\":{\"name\":\"Future Batteries\",\"volume\":\"2 \",\"pages\":\"Article 100003\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950264024000030/pdfft?md5=be1fc3a71e46f09dd45d43a2d6ef742b&pid=1-s2.0-S2950264024000030-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950264024000030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264024000030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
锂离子电池的剩余使用寿命(RUL)预测对于评估电池性能至关重要。尽管用于 RUL 预测的深度学习方法很受欢迎,但其复杂的架构往往在解释和资源消耗方面带来挑战。我们提出了一种将卷积神经网络(CNN)的可解释性与基于蝙蝠的优化器的效率相结合的新方法。卷积神经网络提取电池数据特征并描述降解动力学,而优化器则完善卷积神经网络参数。在 NASA PCoE 数据上进行测试后,我们的方法以最小的计算负担和更少的参数取得了优异的结果。它优于传统方法,获得了 0.9987120 的 R2 分数、0.004397067 Ah 的 MAE 和 0.00656 Ah 的低 RMSE。比较分析证实,所提出的模型优于传统的深度学习模型。
Enhancing prediction accuracy of Remaining Useful Life in lithium-ion batteries: A deep learning approach with Bat optimizer
Remaining Useful Life (RUL) prediction in lithium-ion batteries is crucial for assessing battery performance. Despite the popularity of deep learning methods for RUL prediction, their complex architectures often pose challenges in interpretation and resource consumption. We propose a novel approach that combines the interpretability of a convolutional neural network (CNN) with the efficiency of a bat-based optimizer. CNN extracts battery data features and characterizes degradation kinetics, while the optimizer refines CNN parameters. Tested on NASA PCoE data, our method achieves exceptional results with minimal computational burden and fewer parameters. It outperforms traditional approaches, yielding an R2-score of 0.9987120, an MAE of 0.004397067 Ah, and a low RMSE of 0.00656 Ah. The proposed model outperforms traditional deep learning models, as confirmed by comparative analysis.