利用同步辐射 X 射线衍射探测 TRIP/TWIP Fe50Mn30Co10Cr10 高熵在拉伸加载过程中变形机制的时间分辨演变

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL
J.G. Lopes , J. Shen , E. Maawad , P. Agrawal , N. Schell , R.S. Mishra , J.P. Oliveira
{"title":"利用同步辐射 X 射线衍射探测 TRIP/TWIP Fe50Mn30Co10Cr10 高熵在拉伸加载过程中变形机制的时间分辨演变","authors":"J.G. Lopes ,&nbsp;J. Shen ,&nbsp;E. Maawad ,&nbsp;P. Agrawal ,&nbsp;N. Schell ,&nbsp;R.S. Mishra ,&nbsp;J.P. Oliveira","doi":"10.1016/j.ijplas.2024.104048","DOIUrl":null,"url":null,"abstract":"<div><p>The present research focuses on analyzing the deformation mechanisms associated with tensile loading of the Fe<sub>50</sub>Mn<sub>30</sub>Co<sub>10</sub>Cr<sub>10</sub> high entropy alloy (HEA) using synchrotron x-ray diffraction (SXRD). This novel material is comprised by two major phases: γ-FCC and ε-HCP, where transformation induced plasticity (TRIP) effectively transforms the first into the latter, upon the application of an external stress. However, the presence of thermally stable ε-HCP prior to loading will also influence the deformation mechanism of the material during mechanical solicitation. As such, here we investigate the activation of different strain accommodation mechanisms and the consequent microstructural evolution. Four stages were identified in the mechanical response of this novel HEA, where the TRIP and the twinning induced plasticity (TWIP) deformation modes are the main events granting this HEA its outstanding properties. Such sequence of events allows to evidence the effectiveness of the collaboration between the transformative capability of the γ-FCC phase and the work hardening potential of the ε-HCP phase. This analysis is performed via quantitative and qualitative analysis of the SXRD data, allowing also to investigate the response behavior of specific crystallographic planes to the increasing stress throughout the experiment.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"179 ","pages":"Article 104048"},"PeriodicalIF":9.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S074964192400175X/pdfft?md5=6203ebe027550cbd4e9eef23825f431e&pid=1-s2.0-S074964192400175X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Time-resolved evolution of the deformation mechanisms in a TRIP/TWIP Fe50Mn30Co10Cr10 high entropy during tensile loading probed with synchrotron X-ray diffraction\",\"authors\":\"J.G. Lopes ,&nbsp;J. Shen ,&nbsp;E. Maawad ,&nbsp;P. Agrawal ,&nbsp;N. Schell ,&nbsp;R.S. Mishra ,&nbsp;J.P. Oliveira\",\"doi\":\"10.1016/j.ijplas.2024.104048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present research focuses on analyzing the deformation mechanisms associated with tensile loading of the Fe<sub>50</sub>Mn<sub>30</sub>Co<sub>10</sub>Cr<sub>10</sub> high entropy alloy (HEA) using synchrotron x-ray diffraction (SXRD). This novel material is comprised by two major phases: γ-FCC and ε-HCP, where transformation induced plasticity (TRIP) effectively transforms the first into the latter, upon the application of an external stress. However, the presence of thermally stable ε-HCP prior to loading will also influence the deformation mechanism of the material during mechanical solicitation. As such, here we investigate the activation of different strain accommodation mechanisms and the consequent microstructural evolution. Four stages were identified in the mechanical response of this novel HEA, where the TRIP and the twinning induced plasticity (TWIP) deformation modes are the main events granting this HEA its outstanding properties. Such sequence of events allows to evidence the effectiveness of the collaboration between the transformative capability of the γ-FCC phase and the work hardening potential of the ε-HCP phase. This analysis is performed via quantitative and qualitative analysis of the SXRD data, allowing also to investigate the response behavior of specific crystallographic planes to the increasing stress throughout the experiment.</p></div>\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"179 \",\"pages\":\"Article 104048\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S074964192400175X/pdfft?md5=6203ebe027550cbd4e9eef23825f431e&pid=1-s2.0-S074964192400175X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S074964192400175X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S074964192400175X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是利用同步辐射 X 射线衍射 (SXRD) 分析与 Fe50Mn30Co10Cr10 高熵合金 (HEA) 拉伸负载相关的变形机制。这种新型材料由两个主要相组成:γ-FCC 和 ε-HCP,在施加外部应力时,转化诱导塑性(TRIP)可有效地将前者转化为后者。然而,加载前存在热稳定的 ε-HCP 也会影响材料在机械激励过程中的变形机制。因此,我们在此研究了不同应变容纳机制的激活以及随之而来的微结构演变。在这种新型 HEA 的机械响应中发现了四个阶段,其中 TRIP 和孪生诱导塑性(TWIP)变形模式是赋予这种 HEA 杰出性能的主要事件。这一系列事件证明了γ-FCC 相的转化能力与ε-HCP 相的加工硬化潜力之间的协同效应。这种分析是通过对 SXRD 数据进行定量和定性分析来完成的,同时还可以研究特定晶面在整个实验过程中对应力增加的响应行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Time-resolved evolution of the deformation mechanisms in a TRIP/TWIP Fe50Mn30Co10Cr10 high entropy during tensile loading probed with synchrotron X-ray diffraction

Time-resolved evolution of the deformation mechanisms in a TRIP/TWIP Fe50Mn30Co10Cr10 high entropy during tensile loading probed with synchrotron X-ray diffraction

The present research focuses on analyzing the deformation mechanisms associated with tensile loading of the Fe50Mn30Co10Cr10 high entropy alloy (HEA) using synchrotron x-ray diffraction (SXRD). This novel material is comprised by two major phases: γ-FCC and ε-HCP, where transformation induced plasticity (TRIP) effectively transforms the first into the latter, upon the application of an external stress. However, the presence of thermally stable ε-HCP prior to loading will also influence the deformation mechanism of the material during mechanical solicitation. As such, here we investigate the activation of different strain accommodation mechanisms and the consequent microstructural evolution. Four stages were identified in the mechanical response of this novel HEA, where the TRIP and the twinning induced plasticity (TWIP) deformation modes are the main events granting this HEA its outstanding properties. Such sequence of events allows to evidence the effectiveness of the collaboration between the transformative capability of the γ-FCC phase and the work hardening potential of the ε-HCP phase. This analysis is performed via quantitative and qualitative analysis of the SXRD data, allowing also to investigate the response behavior of specific crystallographic planes to the increasing stress throughout the experiment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信