{"title":"晚太古宙花岗岩悖论:津巴布韦克拉通案例研究","authors":"Hugh Rollinson , Godfrey Chagondah , Axel Hofmann","doi":"10.1016/j.precamres.2024.107491","DOIUrl":null,"url":null,"abstract":"<div><p>Late- to post-tectonic high-K granites are found in many Archaean cratons and are thought to be the product of a major, crustal-scale melting event in the underlying TTG crust leading to the stabilisation of the craton. However, despite the TTG melting model being an obvious explanation for the origin of late-Archaean high-K post-tectonic granites, experimental studies show that TTGs are insufficiently fertile to produce large volumes of potassic granites. This is the late Archaean granite paradox. Here we argue that the paradox can be resolved if the TTG protolith is more potassic than might be expected from a straightforward partial melt of an Archaean basalt. We propose that a likely fertile protolith for late Archaean granites is TTG crust which has incorporated a partial melt of older felsic crust during its emplacement. This hypothesis is validated with a case study from the Neoarchaean rocks of the Zimbabwe Craton.</p><p>This paradox reflects a more fundamental problem when considering the origin of Archaean TTGs, for the ‘enriched’ basaltic protolith invoked in many models of TTG genesis is not abundant in Archaean terrains, nor should it be if the basaltic protolith is a melt of primitive or depleted mantle. This means that fertile, K-rich, TTGs are not simply the product of the melting of a basaltic protolith, but involve an additional process. Three models of TTG petrogenesis are discussed which might lead to K-enrichment in the melt – the hydrothermal potassic enrichment of the basaltic protolith and the influences of fractional crystallisation and/or crustal contamination on the TTG magmas. We conclude that to produce a sufficiently fertile, K-rich TTG source in the Zimbabwe Craton the contribution of a melt phase from older TTG crust is most consistent with the major and trace element and isotopic geochemistry.</p></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The late Archaean granite paradox: A case study from the Zimbabwe Craton\",\"authors\":\"Hugh Rollinson , Godfrey Chagondah , Axel Hofmann\",\"doi\":\"10.1016/j.precamres.2024.107491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Late- to post-tectonic high-K granites are found in many Archaean cratons and are thought to be the product of a major, crustal-scale melting event in the underlying TTG crust leading to the stabilisation of the craton. However, despite the TTG melting model being an obvious explanation for the origin of late-Archaean high-K post-tectonic granites, experimental studies show that TTGs are insufficiently fertile to produce large volumes of potassic granites. This is the late Archaean granite paradox. Here we argue that the paradox can be resolved if the TTG protolith is more potassic than might be expected from a straightforward partial melt of an Archaean basalt. We propose that a likely fertile protolith for late Archaean granites is TTG crust which has incorporated a partial melt of older felsic crust during its emplacement. This hypothesis is validated with a case study from the Neoarchaean rocks of the Zimbabwe Craton.</p><p>This paradox reflects a more fundamental problem when considering the origin of Archaean TTGs, for the ‘enriched’ basaltic protolith invoked in many models of TTG genesis is not abundant in Archaean terrains, nor should it be if the basaltic protolith is a melt of primitive or depleted mantle. This means that fertile, K-rich, TTGs are not simply the product of the melting of a basaltic protolith, but involve an additional process. Three models of TTG petrogenesis are discussed which might lead to K-enrichment in the melt – the hydrothermal potassic enrichment of the basaltic protolith and the influences of fractional crystallisation and/or crustal contamination on the TTG magmas. We conclude that to produce a sufficiently fertile, K-rich TTG source in the Zimbabwe Craton the contribution of a melt phase from older TTG crust is most consistent with the major and trace element and isotopic geochemistry.</p></div>\",\"PeriodicalId\":49674,\"journal\":{\"name\":\"Precambrian Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precambrian Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301926824002043\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precambrian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301926824002043","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The late Archaean granite paradox: A case study from the Zimbabwe Craton
Late- to post-tectonic high-K granites are found in many Archaean cratons and are thought to be the product of a major, crustal-scale melting event in the underlying TTG crust leading to the stabilisation of the craton. However, despite the TTG melting model being an obvious explanation for the origin of late-Archaean high-K post-tectonic granites, experimental studies show that TTGs are insufficiently fertile to produce large volumes of potassic granites. This is the late Archaean granite paradox. Here we argue that the paradox can be resolved if the TTG protolith is more potassic than might be expected from a straightforward partial melt of an Archaean basalt. We propose that a likely fertile protolith for late Archaean granites is TTG crust which has incorporated a partial melt of older felsic crust during its emplacement. This hypothesis is validated with a case study from the Neoarchaean rocks of the Zimbabwe Craton.
This paradox reflects a more fundamental problem when considering the origin of Archaean TTGs, for the ‘enriched’ basaltic protolith invoked in many models of TTG genesis is not abundant in Archaean terrains, nor should it be if the basaltic protolith is a melt of primitive or depleted mantle. This means that fertile, K-rich, TTGs are not simply the product of the melting of a basaltic protolith, but involve an additional process. Three models of TTG petrogenesis are discussed which might lead to K-enrichment in the melt – the hydrothermal potassic enrichment of the basaltic protolith and the influences of fractional crystallisation and/or crustal contamination on the TTG magmas. We conclude that to produce a sufficiently fertile, K-rich TTG source in the Zimbabwe Craton the contribution of a melt phase from older TTG crust is most consistent with the major and trace element and isotopic geochemistry.
期刊介绍:
Precambrian Research publishes studies on all aspects of the early stages of the composition, structure and evolution of the Earth and its planetary neighbours. With a focus on process-oriented and comparative studies, it covers, but is not restricted to, subjects such as:
(1) Chemical, biological, biochemical and cosmochemical evolution; the origin of life; the evolution of the oceans and atmosphere; the early fossil record; palaeobiology;
(2) Geochronology and isotope and elemental geochemistry;
(3) Precambrian mineral deposits;
(4) Geophysical aspects of the early Earth and Precambrian terrains;
(5) Nature, formation and evolution of the Precambrian lithosphere and mantle including magmatic, depositional, metamorphic and tectonic processes.
In addition, the editors particularly welcome integrated process-oriented studies that involve a combination of the above fields and comparative studies that demonstrate the effect of Precambrian evolution on Phanerozoic earth system processes.
Regional and localised studies of Precambrian phenomena are considered appropriate only when the detail and quality allow illustration of a wider process, or when significant gaps in basic knowledge of a particular area can be filled.