组合导数非线性薛定谔孤子层次结构

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Wen-Xiu Ma
{"title":"组合导数非线性薛定谔孤子层次结构","authors":"Wen-Xiu Ma","doi":"10.1016/S0034-4877(24)00040-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to study a Kaup-Newell type matrix eigenvalue problem with four potentials, based on a specific matrix Lie algebra, and construct an associated soliton hierarchy of combined derivative nonlinear Schrödinger (NLS) equations, within the zero curvature formulation. The Liouville integrability of the resulting soliton hierarchy is shown by exploring its hereditary recursion operator and bi-Hamiltonian formulation. The first nonlinear example provides an integrable model consisting of combined derivative NLS equations with two arbitrary constants.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A combined derivative nonlinear SchrÖdinger soliton hierarchy\",\"authors\":\"Wen-Xiu Ma\",\"doi\":\"10.1016/S0034-4877(24)00040-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper aims to study a Kaup-Newell type matrix eigenvalue problem with four potentials, based on a specific matrix Lie algebra, and construct an associated soliton hierarchy of combined derivative nonlinear Schrödinger (NLS) equations, within the zero curvature formulation. The Liouville integrability of the resulting soliton hierarchy is shown by exploring its hereditary recursion operator and bi-Hamiltonian formulation. The first nonlinear example provides an integrable model consisting of combined derivative NLS equations with two arbitrary constants.</p></div>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034487724000405\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487724000405","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在基于特定的矩阵李代数,研究一个具有四个势的考普-纽厄尔(Kaup-Newell)型矩阵特征值问题,并在零曲率公式中构建一个相关的组合导数非线性薛定谔(NLS)方程的孤子层次结构。通过探索其遗传递归算子和双哈密顿公式,证明了所得到的孤子层次结构的Liouville可积分性。第一个非线性实例提供了一个可积分模型,该模型由具有两个任意常数的组合导数 NLS 方程组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A combined derivative nonlinear SchrÖdinger soliton hierarchy

This paper aims to study a Kaup-Newell type matrix eigenvalue problem with four potentials, based on a specific matrix Lie algebra, and construct an associated soliton hierarchy of combined derivative nonlinear Schrödinger (NLS) equations, within the zero curvature formulation. The Liouville integrability of the resulting soliton hierarchy is shown by exploring its hereditary recursion operator and bi-Hamiltonian formulation. The first nonlinear example provides an integrable model consisting of combined derivative NLS equations with two arbitrary constants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信