{"title":"偶发气象事件下潮间带滩涂悬浮泥沙和叶绿素-a 的动态行为","authors":"Hun Jun Ha , Jong Seong Khim , Ho Kyung Ha","doi":"10.1016/j.margeo.2024.107341","DOIUrl":null,"url":null,"abstract":"<div><p>Intertidal flats are important shallow-water habitats and buffers against coastal erosion. Strong, short-lasting meteorological events, such as storms and rainfall, are the main mechanisms of transporting (in)organic materials and sediments. Two <em>in-situ</em> mooring systems were installed simultaneously in the tidal channel and mudflat of Jeungdo, Korea, to understand the dynamic behaviors of suspended sediment and chlorophyll-<em>a</em> (chl-<em>a</em>) under the episodic events. During fair-weather periods with a distinct tidal cycle, the sediment in the mudflat was resuspended during the flood and then advected to the tidal channel during the ebb. The maximum suspended sediment concentration (SSC) and chl-<em>a</em> under storm event were approximately 9 and 2 times higher than those under fair-weather periods, respectively. Under rainfall event, the maxima were approximately 7 and 1.2 times higher than fair-weather, suggesting that sediment and microphytobenthos were highest resuspended by the meteorological events. In addition, a time lag (∼ 1.5 h) between SSC and chl-<em>a</em> occurred in the tidal channel during ebb tide with a rainfall event. During the post-rainfall periods, the SSC and chl-<em>a</em> increased, showing a positive relationship with the bed shear stress, suggesting that the rainfall event could reduce sediment stabilization.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"474 ","pages":"Article 107341"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic behaviors of suspended sediment and chlorophyll-a in intertidal flats under episodic meteorological events\",\"authors\":\"Hun Jun Ha , Jong Seong Khim , Ho Kyung Ha\",\"doi\":\"10.1016/j.margeo.2024.107341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Intertidal flats are important shallow-water habitats and buffers against coastal erosion. Strong, short-lasting meteorological events, such as storms and rainfall, are the main mechanisms of transporting (in)organic materials and sediments. Two <em>in-situ</em> mooring systems were installed simultaneously in the tidal channel and mudflat of Jeungdo, Korea, to understand the dynamic behaviors of suspended sediment and chlorophyll-<em>a</em> (chl-<em>a</em>) under the episodic events. During fair-weather periods with a distinct tidal cycle, the sediment in the mudflat was resuspended during the flood and then advected to the tidal channel during the ebb. The maximum suspended sediment concentration (SSC) and chl-<em>a</em> under storm event were approximately 9 and 2 times higher than those under fair-weather periods, respectively. Under rainfall event, the maxima were approximately 7 and 1.2 times higher than fair-weather, suggesting that sediment and microphytobenthos were highest resuspended by the meteorological events. In addition, a time lag (∼ 1.5 h) between SSC and chl-<em>a</em> occurred in the tidal channel during ebb tide with a rainfall event. During the post-rainfall periods, the SSC and chl-<em>a</em> increased, showing a positive relationship with the bed shear stress, suggesting that the rainfall event could reduce sediment stabilization.</p></div>\",\"PeriodicalId\":18229,\"journal\":{\"name\":\"Marine Geology\",\"volume\":\"474 \",\"pages\":\"Article 107341\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025322724001257\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322724001257","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic behaviors of suspended sediment and chlorophyll-a in intertidal flats under episodic meteorological events
Intertidal flats are important shallow-water habitats and buffers against coastal erosion. Strong, short-lasting meteorological events, such as storms and rainfall, are the main mechanisms of transporting (in)organic materials and sediments. Two in-situ mooring systems were installed simultaneously in the tidal channel and mudflat of Jeungdo, Korea, to understand the dynamic behaviors of suspended sediment and chlorophyll-a (chl-a) under the episodic events. During fair-weather periods with a distinct tidal cycle, the sediment in the mudflat was resuspended during the flood and then advected to the tidal channel during the ebb. The maximum suspended sediment concentration (SSC) and chl-a under storm event were approximately 9 and 2 times higher than those under fair-weather periods, respectively. Under rainfall event, the maxima were approximately 7 and 1.2 times higher than fair-weather, suggesting that sediment and microphytobenthos were highest resuspended by the meteorological events. In addition, a time lag (∼ 1.5 h) between SSC and chl-a occurred in the tidal channel during ebb tide with a rainfall event. During the post-rainfall periods, the SSC and chl-a increased, showing a positive relationship with the bed shear stress, suggesting that the rainfall event could reduce sediment stabilization.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.