平衡超立方体的哈密顿循环与不相连的故障边

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ting Lan, Huazhong Lü
{"title":"平衡超立方体的哈密顿循环与不相连的故障边","authors":"Ting Lan,&nbsp;Huazhong Lü","doi":"10.1016/j.ipl.2024.106518","DOIUrl":null,"url":null,"abstract":"<div><p>The balanced hypercube <span><math><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, a variant of the hypercube, is a novel interconnection network topology for massive parallel systems. It is showed in [Theor. Comput. Sci. 947 (2023) 113708] that for any edge subset <em>F</em> of <span><math><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> there exists a fault-free Hamiltonian cycle in <span><math><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> with <span><math><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>≤</mo><mn>5</mn><mi>n</mi><mo>−</mo><mn>7</mn></math></span> if the degree of every vertex in <span><math><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> is at least two and there exist no <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-cycles in <span><math><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span>. In this paper, we consider the existence of Hamiltonian cycles of <span><math><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> when <em>F</em> is a matching (a set of disjoint edges), and show that each edge <span><math><mi>e</mi><mo>∉</mo><mi>F</mi></math></span> lies on a fault-free Hamiltonian cycle of <span><math><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> with <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. The number of faulty edges in <em>F</em> can be up to <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, which is exponential to the dimension <em>n</em>.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"187 ","pages":"Article 106518"},"PeriodicalIF":0.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamiltonian cycles of balanced hypercube with disjoint faulty edges\",\"authors\":\"Ting Lan,&nbsp;Huazhong Lü\",\"doi\":\"10.1016/j.ipl.2024.106518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The balanced hypercube <span><math><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, a variant of the hypercube, is a novel interconnection network topology for massive parallel systems. It is showed in [Theor. Comput. Sci. 947 (2023) 113708] that for any edge subset <em>F</em> of <span><math><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> there exists a fault-free Hamiltonian cycle in <span><math><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> with <span><math><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>≤</mo><mn>5</mn><mi>n</mi><mo>−</mo><mn>7</mn></math></span> if the degree of every vertex in <span><math><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> is at least two and there exist no <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-cycles in <span><math><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span>. In this paper, we consider the existence of Hamiltonian cycles of <span><math><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> when <em>F</em> is a matching (a set of disjoint edges), and show that each edge <span><math><mi>e</mi><mo>∉</mo><mi>F</mi></math></span> lies on a fault-free Hamiltonian cycle of <span><math><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> with <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. The number of faulty edges in <em>F</em> can be up to <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, which is exponential to the dimension <em>n</em>.</p></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"187 \",\"pages\":\"Article 106518\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019024000486\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019024000486","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

平衡超立方体 BHn 是超立方体的一种变体,是一种用于大规模并行系统的新型互连网络拓扑结构。Theor. Comput. Sci. 947 (2023) 113708]一文指出,对于 BHn 的任意边子集 F,如果 BHn-F 中每个顶点的度至少为 2,且 BHn-F 中不存在 f4-循环,则对于 n≥2 的 BHn-F 中存在一个无故障哈密顿循环,且 |F|≤5n-7 。在本文中,我们考虑了当 F 是一个匹配(一组不相交的边)时 BHn 的哈密顿循环的存在性,并证明了每条边 e∉F 都位于 BHn-F 中 n≥2 的无错哈密顿循环上。F 中故障边的数量可达 22n-1,与维数 n 成指数关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamiltonian cycles of balanced hypercube with disjoint faulty edges

The balanced hypercube BHn, a variant of the hypercube, is a novel interconnection network topology for massive parallel systems. It is showed in [Theor. Comput. Sci. 947 (2023) 113708] that for any edge subset F of BHn there exists a fault-free Hamiltonian cycle in BHnF for n2 with |F|5n7 if the degree of every vertex in BHnF is at least two and there exist no f4-cycles in BHnF. In this paper, we consider the existence of Hamiltonian cycles of BHn when F is a matching (a set of disjoint edges), and show that each edge eF lies on a fault-free Hamiltonian cycle of BHnF with n2. The number of faulty edges in F can be up to 22n1, which is exponential to the dimension n.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信