Faisal Dharma Adhinata , Wahyono , Raden Sumiharto
{"title":"利用机器学习和深度学习对杂草和作物进行分类的综合调查","authors":"Faisal Dharma Adhinata , Wahyono , Raden Sumiharto","doi":"10.1016/j.aiia.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning and deep learning are subsets of Artificial Intelligence that have revolutionized object detection and classification in images or videos. This technology plays a crucial role in facilitating the transition from conventional to precision agriculture, particularly in the context of weed control. Precision agriculture, which previously relied on manual efforts, has now embraced the use of smart devices for more efficient weed detection. However, several challenges are associated with weed detection, including the visual similarity between weed and crop, occlusion and lighting effects, as well as the need for early-stage weed control. Therefore, this study aimed to provide a comprehensive review of the application of both traditional machine learning and deep learning, as well as the combination of the two methods, for weed detection across different crop fields. The results of this review show the advantages and disadvantages of using machine learning and deep learning. Generally, deep learning produced superior accuracy compared to machine learning under various conditions. Machine learning required the selection of the right combination of features to achieve high accuracy in classifying weed and crop, particularly under conditions consisting of lighting and early growth effects. Moreover, a precise segmentation stage would be required in cases of occlusion. Machine learning had the advantage of achieving real-time processing by producing smaller models than deep learning, thereby eliminating the need for additional GPUs. However, the development of GPU technology is currently rapid, so researchers are more often using deep learning for more accurate weed identification.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"13 ","pages":"Pages 45-63"},"PeriodicalIF":8.2000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721724000278/pdfft?md5=13d026a04a00bc2bca21fc068166d32c&pid=1-s2.0-S2589721724000278-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A comprehensive survey on weed and crop classification using machine learning and deep learning\",\"authors\":\"Faisal Dharma Adhinata , Wahyono , Raden Sumiharto\",\"doi\":\"10.1016/j.aiia.2024.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Machine learning and deep learning are subsets of Artificial Intelligence that have revolutionized object detection and classification in images or videos. This technology plays a crucial role in facilitating the transition from conventional to precision agriculture, particularly in the context of weed control. Precision agriculture, which previously relied on manual efforts, has now embraced the use of smart devices for more efficient weed detection. However, several challenges are associated with weed detection, including the visual similarity between weed and crop, occlusion and lighting effects, as well as the need for early-stage weed control. Therefore, this study aimed to provide a comprehensive review of the application of both traditional machine learning and deep learning, as well as the combination of the two methods, for weed detection across different crop fields. The results of this review show the advantages and disadvantages of using machine learning and deep learning. Generally, deep learning produced superior accuracy compared to machine learning under various conditions. Machine learning required the selection of the right combination of features to achieve high accuracy in classifying weed and crop, particularly under conditions consisting of lighting and early growth effects. Moreover, a precise segmentation stage would be required in cases of occlusion. Machine learning had the advantage of achieving real-time processing by producing smaller models than deep learning, thereby eliminating the need for additional GPUs. However, the development of GPU technology is currently rapid, so researchers are more often using deep learning for more accurate weed identification.</p></div>\",\"PeriodicalId\":52814,\"journal\":{\"name\":\"Artificial Intelligence in Agriculture\",\"volume\":\"13 \",\"pages\":\"Pages 45-63\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589721724000278/pdfft?md5=13d026a04a00bc2bca21fc068166d32c&pid=1-s2.0-S2589721724000278-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Agriculture\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589721724000278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721724000278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
A comprehensive survey on weed and crop classification using machine learning and deep learning
Machine learning and deep learning are subsets of Artificial Intelligence that have revolutionized object detection and classification in images or videos. This technology plays a crucial role in facilitating the transition from conventional to precision agriculture, particularly in the context of weed control. Precision agriculture, which previously relied on manual efforts, has now embraced the use of smart devices for more efficient weed detection. However, several challenges are associated with weed detection, including the visual similarity between weed and crop, occlusion and lighting effects, as well as the need for early-stage weed control. Therefore, this study aimed to provide a comprehensive review of the application of both traditional machine learning and deep learning, as well as the combination of the two methods, for weed detection across different crop fields. The results of this review show the advantages and disadvantages of using machine learning and deep learning. Generally, deep learning produced superior accuracy compared to machine learning under various conditions. Machine learning required the selection of the right combination of features to achieve high accuracy in classifying weed and crop, particularly under conditions consisting of lighting and early growth effects. Moreover, a precise segmentation stage would be required in cases of occlusion. Machine learning had the advantage of achieving real-time processing by producing smaller models than deep learning, thereby eliminating the need for additional GPUs. However, the development of GPU technology is currently rapid, so researchers are more often using deep learning for more accurate weed identification.