一类高斯过程的自交局部时间的存在性和平稳性

Pub Date : 2024-06-25 DOI:10.1016/j.spl.2024.110190
Lin Xie, Wenqing Ni, Shuicao Zheng, Guowei Lei
{"title":"一类高斯过程的自交局部时间的存在性和平稳性","authors":"Lin Xie,&nbsp;Wenqing Ni,&nbsp;Shuicao Zheng,&nbsp;Guowei Lei","doi":"10.1016/j.spl.2024.110190","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper sufficient conditions for the existence and smoothness of the self-intersection local time of a class of Gaussian processes are given in the sense of Meyer–Watanabe through <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> convergence and Wiener chaos expansion. Let <span><math><mi>X</mi></math></span> be a centered Gaussian process, whose canonical metric <span><math><mrow><mi>E</mi><mrow><mo>[</mo><mrow><mo>(</mo><mi>X</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mi>X</mi><msup><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>]</mo></mrow></mrow></math></span> is commensurate with <span><math><mrow><msup><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>|</mo><mi>t</mi><mo>−</mo><mi>s</mi><mo>|</mo></mrow><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> is continuous, increasing and concave. If <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>T</mi></mrow></msubsup><mfrac><mrow><mn>1</mn></mrow><mrow><mi>σ</mi><mrow><mo>(</mo><mi>γ</mi><mo>)</mo></mrow></mrow></mfrac><mi>d</mi><mi>γ</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>, then the self-intersection local time of the Gaussian process exists, and if <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>T</mi></mrow></msubsup><msup><mrow><mrow><mo>(</mo><mi>σ</mi><mrow><mo>(</mo><mi>γ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>d</mi><mi>γ</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>, the self-intersection local time of the Gaussian process is smooth in the sense of Meyer–Watanabe.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The existence and smoothness of self-intersection local time for a class of Gaussian processes\",\"authors\":\"Lin Xie,&nbsp;Wenqing Ni,&nbsp;Shuicao Zheng,&nbsp;Guowei Lei\",\"doi\":\"10.1016/j.spl.2024.110190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper sufficient conditions for the existence and smoothness of the self-intersection local time of a class of Gaussian processes are given in the sense of Meyer–Watanabe through <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> convergence and Wiener chaos expansion. Let <span><math><mi>X</mi></math></span> be a centered Gaussian process, whose canonical metric <span><math><mrow><mi>E</mi><mrow><mo>[</mo><mrow><mo>(</mo><mi>X</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mi>X</mi><msup><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>]</mo></mrow></mrow></math></span> is commensurate with <span><math><mrow><msup><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>|</mo><mi>t</mi><mo>−</mo><mi>s</mi><mo>|</mo></mrow><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> is continuous, increasing and concave. If <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>T</mi></mrow></msubsup><mfrac><mrow><mn>1</mn></mrow><mrow><mi>σ</mi><mrow><mo>(</mo><mi>γ</mi><mo>)</mo></mrow></mrow></mfrac><mi>d</mi><mi>γ</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>, then the self-intersection local time of the Gaussian process exists, and if <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>T</mi></mrow></msubsup><msup><mrow><mrow><mo>(</mo><mi>σ</mi><mrow><mo>(</mo><mi>γ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>d</mi><mi>γ</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>, the self-intersection local time of the Gaussian process is smooth in the sense of Meyer–Watanabe.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在 Meyer-Watanabe 的意义上,通过 L2 收敛和维纳混沌扩展,给出了一类高斯过程的自交局部时间的存在性和平稳性的充分条件。假设 X 是一个居中的高斯过程,其典型度量 E[(X(t)-X(s)2)] 与 σ2(|t-s|) 相称,其中 σ(⋅) 是连续、递增和凹的。如果∫0T1σ(γ)dγ<∞,则高斯过程的自交局部时间存在;如果∫0T(σ(γ))-32dγ<∞,则高斯过程的自交局部时间在迈耶-瓦塔那贝的意义上是平稳的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The existence and smoothness of self-intersection local time for a class of Gaussian processes

In this paper sufficient conditions for the existence and smoothness of the self-intersection local time of a class of Gaussian processes are given in the sense of Meyer–Watanabe through L2 convergence and Wiener chaos expansion. Let X be a centered Gaussian process, whose canonical metric E[(X(t)X(s)2)] is commensurate with σ2(|ts|), where σ() is continuous, increasing and concave. If 0T1σ(γ)dγ<, then the self-intersection local time of the Gaussian process exists, and if 0T(σ(γ))32dγ<, the self-intersection local time of the Gaussian process is smooth in the sense of Meyer–Watanabe.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信