蒸汽压力与玻尔兹曼分布定律的联系及其经验修正

Chao-Tun Cao, Xueqian Peng, Chenzhong Cao
{"title":"蒸汽压力与玻尔兹曼分布定律的联系及其经验修正","authors":"Chao-Tun Cao,&nbsp;Xueqian Peng,&nbsp;Chenzhong Cao","doi":"10.1016/j.ctta.2024.100136","DOIUrl":null,"url":null,"abstract":"<div><p>Vapor pressure (<em>P</em>) data of pure substances in gas/solid-liquid equilibrium is important for scientific research and practical applications. Due to the large temperature range going from melting point to critical point, it is an impossible task to determine the <em>P</em> of a pure substance at each temperature point. Up to now, there is no general equation that can accurately describe the relation between temperature (<em>T</em>) and <em>P</em> for all pure substances. Utilizing Boltzmann distribution, we presented a general expression, ln <em>P</em> = <em>a</em> + <em>bT</em> + <em>c</em>ln(<em>T</em>) + <em>d</em>(1/<em>T</em>), for the <em>P</em> of pure substances, that is, the <em>P</em>-<em>T</em> dependence is nearly exponential over the entire range of liquid and solid existence. Furthermore, on the base of above equation, we established a corrected general equation to express the liquid vapor pressure within temperature in going from melting point to critical point.</p><p><span><math><mrow><mi>ln</mi><mi>P</mi><mo>=</mo><mi>a</mi><mo>+</mo><mi>b</mi><mi>T</mi><mo>+</mo><mi>c</mi><msup><mrow><mi>T</mi></mrow><mrow><mi>T</mi><mo>/</mo><msub><mi>T</mi><mi>b</mi></msub></mrow></msup><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mrow><mi>ln</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>f</mi><msup><mrow><mo>(</mo><mrow><mi>ln</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>)</mo></mrow><mrow><mi>T</mi><mo>/</mo><msub><mi>T</mi><mi>b</mi></msub></mrow></msup><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mrow><mn>1</mn><mo>/</mo><mi>T</mi></mrow><mo>)</mo></mrow></mrow></math></span></p><p>The results show that the corrected equation has the advantages of universality, simplicity, and high calculation accuracy for the vapor pressure involving liquid simple substances, liquid inorganic and liquid organic compounds.</p></div>","PeriodicalId":9781,"journal":{"name":"Chemical Thermodynamics and Thermal Analysis","volume":"15 ","pages":"Article 100136"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667312624000099/pdfft?md5=77180e0bbb6ffc7a7b4eae26114c4619&pid=1-s2.0-S2667312624000099-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Vapor pressure to Boltzmann distribution law connection and its empirical corrections\",\"authors\":\"Chao-Tun Cao,&nbsp;Xueqian Peng,&nbsp;Chenzhong Cao\",\"doi\":\"10.1016/j.ctta.2024.100136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vapor pressure (<em>P</em>) data of pure substances in gas/solid-liquid equilibrium is important for scientific research and practical applications. Due to the large temperature range going from melting point to critical point, it is an impossible task to determine the <em>P</em> of a pure substance at each temperature point. Up to now, there is no general equation that can accurately describe the relation between temperature (<em>T</em>) and <em>P</em> for all pure substances. Utilizing Boltzmann distribution, we presented a general expression, ln <em>P</em> = <em>a</em> + <em>bT</em> + <em>c</em>ln(<em>T</em>) + <em>d</em>(1/<em>T</em>), for the <em>P</em> of pure substances, that is, the <em>P</em>-<em>T</em> dependence is nearly exponential over the entire range of liquid and solid existence. Furthermore, on the base of above equation, we established a corrected general equation to express the liquid vapor pressure within temperature in going from melting point to critical point.</p><p><span><math><mrow><mi>ln</mi><mi>P</mi><mo>=</mo><mi>a</mi><mo>+</mo><mi>b</mi><mi>T</mi><mo>+</mo><mi>c</mi><msup><mrow><mi>T</mi></mrow><mrow><mi>T</mi><mo>/</mo><msub><mi>T</mi><mi>b</mi></msub></mrow></msup><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mrow><mi>ln</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>f</mi><msup><mrow><mo>(</mo><mrow><mi>ln</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>)</mo></mrow><mrow><mi>T</mi><mo>/</mo><msub><mi>T</mi><mi>b</mi></msub></mrow></msup><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mrow><mn>1</mn><mo>/</mo><mi>T</mi></mrow><mo>)</mo></mrow></mrow></math></span></p><p>The results show that the corrected equation has the advantages of universality, simplicity, and high calculation accuracy for the vapor pressure involving liquid simple substances, liquid inorganic and liquid organic compounds.</p></div>\",\"PeriodicalId\":9781,\"journal\":{\"name\":\"Chemical Thermodynamics and Thermal Analysis\",\"volume\":\"15 \",\"pages\":\"Article 100136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667312624000099/pdfft?md5=77180e0bbb6ffc7a7b4eae26114c4619&pid=1-s2.0-S2667312624000099-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Thermodynamics and Thermal Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667312624000099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Thermodynamics and Thermal Analysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667312624000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纯物质在气/固-液平衡状态下的蒸汽压(P)数据对于科学研究和实际应用都非常重要。由于从熔点到临界点的温度范围很大,要确定纯物质在每个温度点的 P 值是一项不可能完成的任务。迄今为止,还没有一个通用方程能准确描述所有纯物质的温度(T)和 P 之间的关系。利用玻尔兹曼分布,我们提出了纯物质 P 的一般表达式:ln P = a + bT + cln(T) + d(1/T),也就是说,在整个液态和固态存在的范围内,P-T 依赖关系几乎是指数关系。lnP=a+bT+cTT/Tb+d(ln(T))+f(ln(T))T/Tb+g(1/T) 结果表明,修正后的方程对涉及液态单质、液态无机和液态有机化合物的蒸气压具有普遍性、简便性和计算精度高等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vapor pressure to Boltzmann distribution law connection and its empirical corrections

Vapor pressure to Boltzmann distribution law connection and its empirical corrections

Vapor pressure (P) data of pure substances in gas/solid-liquid equilibrium is important for scientific research and practical applications. Due to the large temperature range going from melting point to critical point, it is an impossible task to determine the P of a pure substance at each temperature point. Up to now, there is no general equation that can accurately describe the relation between temperature (T) and P for all pure substances. Utilizing Boltzmann distribution, we presented a general expression, ln P = a + bT + cln(T) + d(1/T), for the P of pure substances, that is, the P-T dependence is nearly exponential over the entire range of liquid and solid existence. Furthermore, on the base of above equation, we established a corrected general equation to express the liquid vapor pressure within temperature in going from melting point to critical point.

lnP=a+bT+cTT/Tb+d(ln(T))+f(ln(T))T/Tb+g(1/T)

The results show that the corrected equation has the advantages of universality, simplicity, and high calculation accuracy for the vapor pressure involving liquid simple substances, liquid inorganic and liquid organic compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信