Wujie Zhou , Gao Xu , Meixin Fang , Shanshan Mao , Rongwang Yang , Lu Yu
{"title":"PGGNet:用于 RGB-D 室内场景语义分割的金字塔渐导网络","authors":"Wujie Zhou , Gao Xu , Meixin Fang , Shanshan Mao , Rongwang Yang , Lu Yu","doi":"10.1016/j.image.2024.117164","DOIUrl":null,"url":null,"abstract":"<div><p>In RGB-D (red–green–blue and depth) scene semantic segmentation, depth maps provide rich spatial information to RGB images to achieve high performance. However, properly aggregating depth information and reducing noise and information loss during feature encoding after fusion are challenging aspects in scene semantic segmentation. To overcome these problems, we propose a pyramid gradual-guidance network for RGB-D indoor scene semantic segmentation. First, the quality of depth information is improved by a modality-enhancement fusion module and RGB image fusion. Then, the representation of semantic information is improved by multiscale operations. The two resulting adjacent features are used in a feature refinement module with an attention mechanism to extract semantic information. The features from adjacent modules are successively used to form an encoding pyramid, which can substantially reduce information loss and thereby ensure information integrity. Finally, we gradually integrate features at the same scale obtained from the encoding pyramid during decoding to obtain high-quality semantic segmentation. Experimental results obtained from two commonly used indoor scene datasets demonstrate that the proposed pyramid gradual-guidance network attains the highest level of performance in semantic segmentation, as compared to other existing methods.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"128 ","pages":"Article 117164"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PGGNet: Pyramid gradual-guidance network for RGB-D indoor scene semantic segmentation\",\"authors\":\"Wujie Zhou , Gao Xu , Meixin Fang , Shanshan Mao , Rongwang Yang , Lu Yu\",\"doi\":\"10.1016/j.image.2024.117164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In RGB-D (red–green–blue and depth) scene semantic segmentation, depth maps provide rich spatial information to RGB images to achieve high performance. However, properly aggregating depth information and reducing noise and information loss during feature encoding after fusion are challenging aspects in scene semantic segmentation. To overcome these problems, we propose a pyramid gradual-guidance network for RGB-D indoor scene semantic segmentation. First, the quality of depth information is improved by a modality-enhancement fusion module and RGB image fusion. Then, the representation of semantic information is improved by multiscale operations. The two resulting adjacent features are used in a feature refinement module with an attention mechanism to extract semantic information. The features from adjacent modules are successively used to form an encoding pyramid, which can substantially reduce information loss and thereby ensure information integrity. Finally, we gradually integrate features at the same scale obtained from the encoding pyramid during decoding to obtain high-quality semantic segmentation. Experimental results obtained from two commonly used indoor scene datasets demonstrate that the proposed pyramid gradual-guidance network attains the highest level of performance in semantic segmentation, as compared to other existing methods.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"128 \",\"pages\":\"Article 117164\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524000651\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000651","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
PGGNet: Pyramid gradual-guidance network for RGB-D indoor scene semantic segmentation
In RGB-D (red–green–blue and depth) scene semantic segmentation, depth maps provide rich spatial information to RGB images to achieve high performance. However, properly aggregating depth information and reducing noise and information loss during feature encoding after fusion are challenging aspects in scene semantic segmentation. To overcome these problems, we propose a pyramid gradual-guidance network for RGB-D indoor scene semantic segmentation. First, the quality of depth information is improved by a modality-enhancement fusion module and RGB image fusion. Then, the representation of semantic information is improved by multiscale operations. The two resulting adjacent features are used in a feature refinement module with an attention mechanism to extract semantic information. The features from adjacent modules are successively used to form an encoding pyramid, which can substantially reduce information loss and thereby ensure information integrity. Finally, we gradually integrate features at the same scale obtained from the encoding pyramid during decoding to obtain high-quality semantic segmentation. Experimental results obtained from two commonly used indoor scene datasets demonstrate that the proposed pyramid gradual-guidance network attains the highest level of performance in semantic segmentation, as compared to other existing methods.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.