放射结果预测--优化剂量计划和治疗后磁共振图像:立体定向放射手术治疗乳腺癌脑转移的概念验证研究

IF 3.4 Q2 ONCOLOGY
Shraddha Pandey , Tugce Kutuk , Mahmoud A. Abdalah , Olya Stringfield , Harshan Ravi , Matthew N. Mills , Jasmine A. Graham , Kujtim Latifi , Wilfrido A. Moreno , Kamran A. Ahmed , Natarajan Raghunand
{"title":"放射结果预测--优化剂量计划和治疗后磁共振图像:立体定向放射手术治疗乳腺癌脑转移的概念验证研究","authors":"Shraddha Pandey ,&nbsp;Tugce Kutuk ,&nbsp;Mahmoud A. Abdalah ,&nbsp;Olya Stringfield ,&nbsp;Harshan Ravi ,&nbsp;Matthew N. Mills ,&nbsp;Jasmine A. Graham ,&nbsp;Kujtim Latifi ,&nbsp;Wilfrido A. Moreno ,&nbsp;Kamran A. Ahmed ,&nbsp;Natarajan Raghunand","doi":"10.1016/j.phro.2024.100602","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><p>Information in multiparametric Magnetic Resonance (mpMR) images is relatable to voxel-level tumor response to Radiation Treatment (RT). We have investigated a deep learning framework to predict (i) post-treatment mpMR images from pre-treatment mpMR images and the dose map (“forward models”), and, (ii) the RT dose map that will produce prescribed changes within the Gross Tumor Volume (GTV) on post-treatment mpMR images (“inverse model”), in Breast Cancer Metastases to the Brain (BCMB) treated with Stereotactic Radiosurgery (SRS).</p></div><div><h3>Materials and methods</h3><p>Local outcomes, planning computed tomography (CT) images, dose maps, and pre-treatment and post-treatment Apparent Diffusion Coefficient of water (ADC) maps, T1-weighted unenhanced (T1w) and contrast-enhanced (T1wCE), T2-weighted (T2w) and Fluid-Attenuated Inversion Recovery (FLAIR) mpMR images were curated from 39 BCMB patients. mpMR images were co-registered to the planning CT and intensity-calibrated. A 2D pix2pix architecture was used to train 5 forward models (ADC, T2w, FLAIR, T1w, T1wCE) and 1 inverse model on 1940 slices from 18 BCMB patients, and tested on 437 slices from another 9 BCMB patients.</p></div><div><h3>Results</h3><p>Root Mean Square Percent Error (RMSPE) within the GTV between predicted and ground-truth post-RT images for the 5 forward models, in 136 test slices containing GTV, were (mean ± SD) 0.12 ± 0.044 (ADC), 0.14 ± 0.066 (T2w), 0.08 ± 0.038 (T1w), 0.13 ± 0.058 (T1wCE), and 0.09 ± 0.056 (FLAIR). RMSPE within the GTV on the same 136 test slices, between the predicted and ground-truth dose maps, was 0.37 ± 0.20 for the inverse model.</p></div><div><h3>Conclusions</h3><p>A deep learning-based approach for radiologic outcome-optimized dose planning in SRS of BCMB has been demonstrated.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624000721/pdfft?md5=efffb06cbc1579bd9ae00f80c49fcd84&pid=1-s2.0-S2405631624000721-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Prediction of radiologic outcome-optimized dose plans and post-treatment magnetic resonance images: A proof-of-concept study in breast cancer brain metastases treated with stereotactic radiosurgery\",\"authors\":\"Shraddha Pandey ,&nbsp;Tugce Kutuk ,&nbsp;Mahmoud A. Abdalah ,&nbsp;Olya Stringfield ,&nbsp;Harshan Ravi ,&nbsp;Matthew N. Mills ,&nbsp;Jasmine A. Graham ,&nbsp;Kujtim Latifi ,&nbsp;Wilfrido A. Moreno ,&nbsp;Kamran A. Ahmed ,&nbsp;Natarajan Raghunand\",\"doi\":\"10.1016/j.phro.2024.100602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><p>Information in multiparametric Magnetic Resonance (mpMR) images is relatable to voxel-level tumor response to Radiation Treatment (RT). We have investigated a deep learning framework to predict (i) post-treatment mpMR images from pre-treatment mpMR images and the dose map (“forward models”), and, (ii) the RT dose map that will produce prescribed changes within the Gross Tumor Volume (GTV) on post-treatment mpMR images (“inverse model”), in Breast Cancer Metastases to the Brain (BCMB) treated with Stereotactic Radiosurgery (SRS).</p></div><div><h3>Materials and methods</h3><p>Local outcomes, planning computed tomography (CT) images, dose maps, and pre-treatment and post-treatment Apparent Diffusion Coefficient of water (ADC) maps, T1-weighted unenhanced (T1w) and contrast-enhanced (T1wCE), T2-weighted (T2w) and Fluid-Attenuated Inversion Recovery (FLAIR) mpMR images were curated from 39 BCMB patients. mpMR images were co-registered to the planning CT and intensity-calibrated. A 2D pix2pix architecture was used to train 5 forward models (ADC, T2w, FLAIR, T1w, T1wCE) and 1 inverse model on 1940 slices from 18 BCMB patients, and tested on 437 slices from another 9 BCMB patients.</p></div><div><h3>Results</h3><p>Root Mean Square Percent Error (RMSPE) within the GTV between predicted and ground-truth post-RT images for the 5 forward models, in 136 test slices containing GTV, were (mean ± SD) 0.12 ± 0.044 (ADC), 0.14 ± 0.066 (T2w), 0.08 ± 0.038 (T1w), 0.13 ± 0.058 (T1wCE), and 0.09 ± 0.056 (FLAIR). RMSPE within the GTV on the same 136 test slices, between the predicted and ground-truth dose maps, was 0.37 ± 0.20 for the inverse model.</p></div><div><h3>Conclusions</h3><p>A deep learning-based approach for radiologic outcome-optimized dose planning in SRS of BCMB has been demonstrated.</p></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000721/pdfft?md5=efffb06cbc1579bd9ae00f80c49fcd84&pid=1-s2.0-S2405631624000721-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624000721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的多参数磁共振(mpMR)图像中的信息与体素级肿瘤对放射治疗(RT)的反应相关。我们研究了一种深度学习框架,用于预测:(i) 通过治疗前的 mpMR 图像和剂量图预测治疗后的 mpMR 图像("正向模型");(ii) 通过立体定向放射手术(SRS)预测治疗后的 mpMR 图像上肿瘤总体积(GTV)内产生规定变化的 RT 剂量图("逆向模型")。材料和方法对 39 名 BCMB 患者的局部结果、计划计算机断层扫描(CT)图像、剂量图、治疗前和治疗后的水的表观扩散系数(ADC)图、T1 加权未增强(T1w)和对比增强(T1wCE)、T2 加权(T2w)和流体衰减反转恢复(FLAIR)mpMR 图像进行了策划。使用 2D pix2pix 架构在 18 名 BCMB 患者的 1940 张切片上训练了 5 个正向模型(ADC、T2w、FLAIR、T1w、T1wCE)和 1 个反向模型,并在另外 9 名 BCMB 患者的 437 张切片上进行了测试。结果 在含有 GTV 的 136 个测试切片中,5 个正向模型的预测和地面实况 RT 后图像之间的 GTV 内根均方百分比误差 (RMSPE) 分别为(平均值 ± SD)0.12 ± 0.044(ADC)、0.14 ± 0.066(T2w)、0.08 ± 0.038(T1w)、0.13 ± 0.058(T1wCE)和 0.09 ± 0.056(FLAIR)。在相同的 136 张测试切片上,反向模型预测剂量图与地面实况剂量图之间的 GTV 内 RMSPE 为 0.37 ± 0.20。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of radiologic outcome-optimized dose plans and post-treatment magnetic resonance images: A proof-of-concept study in breast cancer brain metastases treated with stereotactic radiosurgery

Background and purpose

Information in multiparametric Magnetic Resonance (mpMR) images is relatable to voxel-level tumor response to Radiation Treatment (RT). We have investigated a deep learning framework to predict (i) post-treatment mpMR images from pre-treatment mpMR images and the dose map (“forward models”), and, (ii) the RT dose map that will produce prescribed changes within the Gross Tumor Volume (GTV) on post-treatment mpMR images (“inverse model”), in Breast Cancer Metastases to the Brain (BCMB) treated with Stereotactic Radiosurgery (SRS).

Materials and methods

Local outcomes, planning computed tomography (CT) images, dose maps, and pre-treatment and post-treatment Apparent Diffusion Coefficient of water (ADC) maps, T1-weighted unenhanced (T1w) and contrast-enhanced (T1wCE), T2-weighted (T2w) and Fluid-Attenuated Inversion Recovery (FLAIR) mpMR images were curated from 39 BCMB patients. mpMR images were co-registered to the planning CT and intensity-calibrated. A 2D pix2pix architecture was used to train 5 forward models (ADC, T2w, FLAIR, T1w, T1wCE) and 1 inverse model on 1940 slices from 18 BCMB patients, and tested on 437 slices from another 9 BCMB patients.

Results

Root Mean Square Percent Error (RMSPE) within the GTV between predicted and ground-truth post-RT images for the 5 forward models, in 136 test slices containing GTV, were (mean ± SD) 0.12 ± 0.044 (ADC), 0.14 ± 0.066 (T2w), 0.08 ± 0.038 (T1w), 0.13 ± 0.058 (T1wCE), and 0.09 ± 0.056 (FLAIR). RMSPE within the GTV on the same 136 test slices, between the predicted and ground-truth dose maps, was 0.37 ± 0.20 for the inverse model.

Conclusions

A deep learning-based approach for radiologic outcome-optimized dose planning in SRS of BCMB has been demonstrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信