A. Alonso Rodríguez , J. Camaño , E. De Los Santos , F. Rapetti
{"title":"高阶无发散有限元空间的基础","authors":"A. Alonso Rodríguez , J. Camaño , E. De Los Santos , F. Rapetti","doi":"10.1016/j.rinam.2024.100469","DOIUrl":null,"url":null,"abstract":"<div><p>A method classically used in the lower polynomial degree for the construction of a finite element basis of the space of divergence-free functions is here extended to any polynomial degree for a bounded domain without topological restrictions. The method uses graphs associated with two differential operators: the gradient and the divergence, and selects the basis using a spanning tree of the first graph. It can be applied for the two main families of degrees of freedom, weights and moments, used to express finite element differential forms.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100469"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000396/pdfft?md5=cad7794725bf9528df20dde909864b17&pid=1-s2.0-S2590037424000396-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Basis for high order divergence-free finite element spaces\",\"authors\":\"A. Alonso Rodríguez , J. Camaño , E. De Los Santos , F. Rapetti\",\"doi\":\"10.1016/j.rinam.2024.100469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A method classically used in the lower polynomial degree for the construction of a finite element basis of the space of divergence-free functions is here extended to any polynomial degree for a bounded domain without topological restrictions. The method uses graphs associated with two differential operators: the gradient and the divergence, and selects the basis using a spanning tree of the first graph. It can be applied for the two main families of degrees of freedom, weights and moments, used to express finite element differential forms.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"23 \",\"pages\":\"Article 100469\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000396/pdfft?md5=cad7794725bf9528df20dde909864b17&pid=1-s2.0-S2590037424000396-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Basis for high order divergence-free finite element spaces
A method classically used in the lower polynomial degree for the construction of a finite element basis of the space of divergence-free functions is here extended to any polynomial degree for a bounded domain without topological restrictions. The method uses graphs associated with two differential operators: the gradient and the divergence, and selects the basis using a spanning tree of the first graph. It can be applied for the two main families of degrees of freedom, weights and moments, used to express finite element differential forms.