{"title":"赛前达到顶峰的时间点对重大比赛成绩的影响。","authors":"Wei Xin, Zhong Yaping, Wang Tiantian","doi":"10.1080/02701367.2024.2357648","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives:</b> To study the effects of the time points of pre-competition peaking (TPCP, the time point when an athlete's peaking shows up before a major-competition) on the athletes' performances in the major-competition (M-Performance). <b>Design:</b> Mixed design. <b>Methods:</b> We used cluster analysis to classify 892 elite track and field athletes who participated in the 2017 and 2019 IAAF World Championships in Athletics, based on their TPCP and other related factors. Furthermore, we used a fixed-effects model and a mixed-effects model to analyze the relationship between the TPCP and M-Performance. <b>Results:</b> The TPCP of elite track and field athletes were divided into four categories: late, slightly late, slightly early, and early. In speed/power events, athletes in the slightly late category had better M-Performance. In endurance events, athletes in the slightly early category had better M-Performance. In speed/power events, delaying the TPCP did not improve the athletes' M-Performance. In endurance events, advancing the TPCP effectively improved the athletes' M-Performance. <b>Conclusions:</b> To improve M-Performance, athletes in speed/power events should be peaking 2-8 weeks before a major-competition, and athletes in endurance events should be peaking 8-14 weeks before a major-competition. Future research should aim to identify individual factors affecting TPCP, such as the time for the body's adaptation to training and the residual training effect.</p>","PeriodicalId":94191,"journal":{"name":"Research quarterly for exercise and sport","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Time Point of Pre-Competitions Peaking on Performance in Major-Competitions.\",\"authors\":\"Wei Xin, Zhong Yaping, Wang Tiantian\",\"doi\":\"10.1080/02701367.2024.2357648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objectives:</b> To study the effects of the time points of pre-competition peaking (TPCP, the time point when an athlete's peaking shows up before a major-competition) on the athletes' performances in the major-competition (M-Performance). <b>Design:</b> Mixed design. <b>Methods:</b> We used cluster analysis to classify 892 elite track and field athletes who participated in the 2017 and 2019 IAAF World Championships in Athletics, based on their TPCP and other related factors. Furthermore, we used a fixed-effects model and a mixed-effects model to analyze the relationship between the TPCP and M-Performance. <b>Results:</b> The TPCP of elite track and field athletes were divided into four categories: late, slightly late, slightly early, and early. In speed/power events, athletes in the slightly late category had better M-Performance. In endurance events, athletes in the slightly early category had better M-Performance. In speed/power events, delaying the TPCP did not improve the athletes' M-Performance. In endurance events, advancing the TPCP effectively improved the athletes' M-Performance. <b>Conclusions:</b> To improve M-Performance, athletes in speed/power events should be peaking 2-8 weeks before a major-competition, and athletes in endurance events should be peaking 8-14 weeks before a major-competition. Future research should aim to identify individual factors affecting TPCP, such as the time for the body's adaptation to training and the residual training effect.</p>\",\"PeriodicalId\":94191,\"journal\":{\"name\":\"Research quarterly for exercise and sport\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research quarterly for exercise and sport\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02701367.2024.2357648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research quarterly for exercise and sport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02701367.2024.2357648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Time Point of Pre-Competitions Peaking on Performance in Major-Competitions.
Objectives: To study the effects of the time points of pre-competition peaking (TPCP, the time point when an athlete's peaking shows up before a major-competition) on the athletes' performances in the major-competition (M-Performance). Design: Mixed design. Methods: We used cluster analysis to classify 892 elite track and field athletes who participated in the 2017 and 2019 IAAF World Championships in Athletics, based on their TPCP and other related factors. Furthermore, we used a fixed-effects model and a mixed-effects model to analyze the relationship between the TPCP and M-Performance. Results: The TPCP of elite track and field athletes were divided into four categories: late, slightly late, slightly early, and early. In speed/power events, athletes in the slightly late category had better M-Performance. In endurance events, athletes in the slightly early category had better M-Performance. In speed/power events, delaying the TPCP did not improve the athletes' M-Performance. In endurance events, advancing the TPCP effectively improved the athletes' M-Performance. Conclusions: To improve M-Performance, athletes in speed/power events should be peaking 2-8 weeks before a major-competition, and athletes in endurance events should be peaking 8-14 weeks before a major-competition. Future research should aim to identify individual factors affecting TPCP, such as the time for the body's adaptation to training and the residual training effect.