{"title":"精选的植物大麻素能抑制 SN-38 和细胞因子诱发的上皮通透性增加,并改善体外肠道屏障功能。","authors":"Dylan T. Marsh, Scott D. Smid","doi":"10.1016/j.tiv.2024.105888","DOIUrl":null,"url":null,"abstract":"<div><p>Irinotecan use is linked to the development of gastrointestinal toxicity and inflammation, or gastrointestinal mucositis. Selected phytocannabinoids have been ascribed anti-inflammatory effects in models of gastrointestinal inflammation, associated with maintaining epithelial barrier function. We characterised the mucoprotective capacity of the phytocannabinoids: cannabidiol, cannabigerol, cannabichromene and cannabidivarin in a cell-based model of intestinal epithelial stress occurring in mucositis.</p><p>Transepithelial electrical resistance (TEER) was measured to determine changes in epithelial permeability in the presence of SN-38 (5 μM) or the pro-inflammatory cytokines TNFα and IL-1β (each at 100 ng/mL), alone or with concomitant treatment with each of the phytocannabinoids (1 μM). The DCFDA assay was used to determine the ROS-scavenging ability of each phytocannabinoid following treatment with the lipid peroxidant <em>t</em>bhp (200 μM).</p><p>Each phytocannabinoid provided significant protection against cytokine-evoked increases in epithelial permeability. Cannabidiol, cannabidivarin and cannabigerol were also able to significantly inhibit SN-38-evoked increases in permeability. None of the tested phytocannabinoids inhibited <em>t</em>bhp-induced ROS generation.</p><p>These results highlight a novel role for cannabidiol, cannabidivarin and cannabigerol as inhibitors of SN-38-evoked increases in epithelial permeability and support the rationale for the further development of novel phytocannabinoids as supportive therapeutics in the management of irinotecan-associated mucositis.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"99 ","pages":"Article 105888"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0887233324001188/pdfft?md5=ef17c8dc0f9b8add6d3d27bb79e1930f&pid=1-s2.0-S0887233324001188-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Selected phytocannabinoids inhibit SN-38- and cytokine-evoked increases in epithelial permeability and improve intestinal barrier function in vitro\",\"authors\":\"Dylan T. Marsh, Scott D. Smid\",\"doi\":\"10.1016/j.tiv.2024.105888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Irinotecan use is linked to the development of gastrointestinal toxicity and inflammation, or gastrointestinal mucositis. Selected phytocannabinoids have been ascribed anti-inflammatory effects in models of gastrointestinal inflammation, associated with maintaining epithelial barrier function. We characterised the mucoprotective capacity of the phytocannabinoids: cannabidiol, cannabigerol, cannabichromene and cannabidivarin in a cell-based model of intestinal epithelial stress occurring in mucositis.</p><p>Transepithelial electrical resistance (TEER) was measured to determine changes in epithelial permeability in the presence of SN-38 (5 μM) or the pro-inflammatory cytokines TNFα and IL-1β (each at 100 ng/mL), alone or with concomitant treatment with each of the phytocannabinoids (1 μM). The DCFDA assay was used to determine the ROS-scavenging ability of each phytocannabinoid following treatment with the lipid peroxidant <em>t</em>bhp (200 μM).</p><p>Each phytocannabinoid provided significant protection against cytokine-evoked increases in epithelial permeability. Cannabidiol, cannabidivarin and cannabigerol were also able to significantly inhibit SN-38-evoked increases in permeability. None of the tested phytocannabinoids inhibited <em>t</em>bhp-induced ROS generation.</p><p>These results highlight a novel role for cannabidiol, cannabidivarin and cannabigerol as inhibitors of SN-38-evoked increases in epithelial permeability and support the rationale for the further development of novel phytocannabinoids as supportive therapeutics in the management of irinotecan-associated mucositis.</p></div>\",\"PeriodicalId\":54423,\"journal\":{\"name\":\"Toxicology in Vitro\",\"volume\":\"99 \",\"pages\":\"Article 105888\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0887233324001188/pdfft?md5=ef17c8dc0f9b8add6d3d27bb79e1930f&pid=1-s2.0-S0887233324001188-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology in Vitro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0887233324001188\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233324001188","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Selected phytocannabinoids inhibit SN-38- and cytokine-evoked increases in epithelial permeability and improve intestinal barrier function in vitro
Irinotecan use is linked to the development of gastrointestinal toxicity and inflammation, or gastrointestinal mucositis. Selected phytocannabinoids have been ascribed anti-inflammatory effects in models of gastrointestinal inflammation, associated with maintaining epithelial barrier function. We characterised the mucoprotective capacity of the phytocannabinoids: cannabidiol, cannabigerol, cannabichromene and cannabidivarin in a cell-based model of intestinal epithelial stress occurring in mucositis.
Transepithelial electrical resistance (TEER) was measured to determine changes in epithelial permeability in the presence of SN-38 (5 μM) or the pro-inflammatory cytokines TNFα and IL-1β (each at 100 ng/mL), alone or with concomitant treatment with each of the phytocannabinoids (1 μM). The DCFDA assay was used to determine the ROS-scavenging ability of each phytocannabinoid following treatment with the lipid peroxidant tbhp (200 μM).
Each phytocannabinoid provided significant protection against cytokine-evoked increases in epithelial permeability. Cannabidiol, cannabidivarin and cannabigerol were also able to significantly inhibit SN-38-evoked increases in permeability. None of the tested phytocannabinoids inhibited tbhp-induced ROS generation.
These results highlight a novel role for cannabidiol, cannabidivarin and cannabigerol as inhibitors of SN-38-evoked increases in epithelial permeability and support the rationale for the further development of novel phytocannabinoids as supportive therapeutics in the management of irinotecan-associated mucositis.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.