Juan Liu, Tianping Bao, Yajuan Zhou, Mengmeng Ma, Zhaofang Tian
{"title":"缺乏分泌型磷蛋白 1 可缓解高氧诱导的新生小鼠支气管肺发育不良症","authors":"Juan Liu, Tianping Bao, Yajuan Zhou, Mengmeng Ma, Zhaofang Tian","doi":"10.1007/s10753-024-02088-1","DOIUrl":null,"url":null,"abstract":"<p><p>Bronchopulmonary dysplasia (BPD) is a common chronic lung disorder characterized by impaired proximal airway and bronchoalveolar development in premature births. Secreted phosphoprotein 1 (SPP1) is involved in lung development and lung injury events, while its role was not explored in BPD. For establishing the in vivo models of BPD, a mouse model of hyperoxia-induced lung injury was generated by exposing neonatal mice to hyperoxia for 7 days after birth. Alveolar myofibroblasts (AMYFs) were treated with hyperoxia to establish the in vitro models of BPD. Based on the scRNA-seq analysis of lungs of mice housed under normoxia or hyperoxia conditions, mouse macrophages and fibroblasts were main different cell clusters between the two groups, and differentially expressed genes in fibroblasts were screened. Further GO and KEGG enrichment analysis revealed that these differentially expressed genes were mainly enriched in the pathways related to cell proliferation, apoptosis as well as the PI3K-AKT and ERK/MAPK pathways. SPP1 was found up-regulated in the lung tissues of hyperoxia mice. We also demonstrated the up-regulation of SPP1 in the BPD patients, the mouse model of hyperoxia-induced lung injury, and hyperoxia-induced cells. SPP1 deficiency was revealed to reduce the hyperoxia-induced apoptosis, oxidative stress and inflammation and increase the viability of AMYFs. In the mouse model of hyperoxia induced lung injury, SPP1 deficiency was demonstrated to reverse the hyperoxia-induced alveolar growth disruption, oxidative stress and inflammation. Overall, SPP1 exacerbates BPD progression in vitro and in vivo by regulating oxidative stress and inflammatory response via the PI3K-AKT and ERK/MAPK pathways, which might provide novel therapeutic target for BPD therapy.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"783-795"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deficiency of Secreted Phosphoprotein 1 Alleviates Hyperoxia-induced Bronchopulmonary Dysplasia in Neonatal Mice.\",\"authors\":\"Juan Liu, Tianping Bao, Yajuan Zhou, Mengmeng Ma, Zhaofang Tian\",\"doi\":\"10.1007/s10753-024-02088-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bronchopulmonary dysplasia (BPD) is a common chronic lung disorder characterized by impaired proximal airway and bronchoalveolar development in premature births. Secreted phosphoprotein 1 (SPP1) is involved in lung development and lung injury events, while its role was not explored in BPD. For establishing the in vivo models of BPD, a mouse model of hyperoxia-induced lung injury was generated by exposing neonatal mice to hyperoxia for 7 days after birth. Alveolar myofibroblasts (AMYFs) were treated with hyperoxia to establish the in vitro models of BPD. Based on the scRNA-seq analysis of lungs of mice housed under normoxia or hyperoxia conditions, mouse macrophages and fibroblasts were main different cell clusters between the two groups, and differentially expressed genes in fibroblasts were screened. Further GO and KEGG enrichment analysis revealed that these differentially expressed genes were mainly enriched in the pathways related to cell proliferation, apoptosis as well as the PI3K-AKT and ERK/MAPK pathways. SPP1 was found up-regulated in the lung tissues of hyperoxia mice. We also demonstrated the up-regulation of SPP1 in the BPD patients, the mouse model of hyperoxia-induced lung injury, and hyperoxia-induced cells. SPP1 deficiency was revealed to reduce the hyperoxia-induced apoptosis, oxidative stress and inflammation and increase the viability of AMYFs. In the mouse model of hyperoxia induced lung injury, SPP1 deficiency was demonstrated to reverse the hyperoxia-induced alveolar growth disruption, oxidative stress and inflammation. Overall, SPP1 exacerbates BPD progression in vitro and in vivo by regulating oxidative stress and inflammatory response via the PI3K-AKT and ERK/MAPK pathways, which might provide novel therapeutic target for BPD therapy.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"783-795\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-024-02088-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02088-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Deficiency of Secreted Phosphoprotein 1 Alleviates Hyperoxia-induced Bronchopulmonary Dysplasia in Neonatal Mice.
Bronchopulmonary dysplasia (BPD) is a common chronic lung disorder characterized by impaired proximal airway and bronchoalveolar development in premature births. Secreted phosphoprotein 1 (SPP1) is involved in lung development and lung injury events, while its role was not explored in BPD. For establishing the in vivo models of BPD, a mouse model of hyperoxia-induced lung injury was generated by exposing neonatal mice to hyperoxia for 7 days after birth. Alveolar myofibroblasts (AMYFs) were treated with hyperoxia to establish the in vitro models of BPD. Based on the scRNA-seq analysis of lungs of mice housed under normoxia or hyperoxia conditions, mouse macrophages and fibroblasts were main different cell clusters between the two groups, and differentially expressed genes in fibroblasts were screened. Further GO and KEGG enrichment analysis revealed that these differentially expressed genes were mainly enriched in the pathways related to cell proliferation, apoptosis as well as the PI3K-AKT and ERK/MAPK pathways. SPP1 was found up-regulated in the lung tissues of hyperoxia mice. We also demonstrated the up-regulation of SPP1 in the BPD patients, the mouse model of hyperoxia-induced lung injury, and hyperoxia-induced cells. SPP1 deficiency was revealed to reduce the hyperoxia-induced apoptosis, oxidative stress and inflammation and increase the viability of AMYFs. In the mouse model of hyperoxia induced lung injury, SPP1 deficiency was demonstrated to reverse the hyperoxia-induced alveolar growth disruption, oxidative stress and inflammation. Overall, SPP1 exacerbates BPD progression in vitro and in vivo by regulating oxidative stress and inflammatory response via the PI3K-AKT and ERK/MAPK pathways, which might provide novel therapeutic target for BPD therapy.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.