猪、猫、树鼩和狗肝脏和肾脏中的功能性细胞色素 P450 4A 酶与人类 P450 4A11 代谢能力的比较研究。

IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Yasuhiro Uno, Kyoko Tsukiyama-Kohara, Mayumi Ishizuka, Hazuki Mizukawa, Norie Murayama, Hiroshi Yamazaki
{"title":"猪、猫、树鼩和狗肝脏和肾脏中的功能性细胞色素 P450 4A 酶与人类 P450 4A11 代谢能力的比较研究。","authors":"Yasuhiro Uno, Kyoko Tsukiyama-Kohara, Mayumi Ishizuka, Hazuki Mizukawa, Norie Murayama, Hiroshi Yamazaki","doi":"10.1124/dmd.124.001780","DOIUrl":null,"url":null,"abstract":"<p><p>Pigs are sometimes used in preclinical drug metabolism studies, with growing interest, and thus their drug-metabolizing enzymes, including the cytochromes P450 (P450 or CYP; EC 1.14.14.1), need to be examined. In the present study, novel CYP4A cDNAs were isolated and characterized, namely, pig CYP4A23 and CYP4A90; cat CYP4A37 and CYP4A106; and tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g. For comparison, the following known CYP4A cDNAs were also analyzed: pig CYP4A21 and dog CYP4A37, CYP4A38, and CYP4A39. These CYP4A cDNAs all contained open reading frames of 504-513 amino acids and had high amino acid sequence identity (74%-80%) with human CYP4As. Phylogenetic analysis of amino acid sequences revealed that these CYP4As were clustered in each species. All <i>CYP4A</i> genes contained 12 coding exons and formed a gene cluster in the corresponding genomic regions. A range of tissue types were analyzed, and these CYP4A mRNAs were preferentially expressed in liver and/or kidney, except for pig CYP4A90, which showed preferential expression in lung and duodenum. CYP4A enzymes, heterologously expressed in <i>Escherichia coli</i>, preferentially catalyzed lauric acid 12-hydroxylation and arachidonic acid 20-hydroxylation, just as human CYP4A11 does, with the same regioselectivity (i.e., at the <i>ω</i>-position of fatty acids). These results imply that dog, cat, pig, and tree shrew CYP4As have functional characteristics similar to those of human CYP4A11, with minor differences in lauric acid 12-hydroxylation. SIGNIFICANCE STATEMENT: Cytochrome P450 (P450, CYP) 4As are important P450s in human biological processes because of their fatty acid-metabolizing ability. Pig CYP4A21, CYP4A23, and CYP4A90; cat CYP4A37 and CYP4A106; tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g; and dog CYP4A37, CYP4A38, and CYP4A39 cDNAs were isolated and analyzed. These CYP4A cDNAs shared relatively high sequence identities with human CYP4A11 and CYP4A22. Pig, cat, tree shrew, and dog CYP4As in the liver and kidneys are likely to catalyze the <i>ω</i>-hydroxylation of fatty acids.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":"1009-1019"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Functional Cytochrome P450 4A Enzymes in Liver and Kidney of Pigs, Cats, Tree Shrews, and Dogs in Comparison with the Metabolic Capacity of Human P450 4A11.\",\"authors\":\"Yasuhiro Uno, Kyoko Tsukiyama-Kohara, Mayumi Ishizuka, Hazuki Mizukawa, Norie Murayama, Hiroshi Yamazaki\",\"doi\":\"10.1124/dmd.124.001780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pigs are sometimes used in preclinical drug metabolism studies, with growing interest, and thus their drug-metabolizing enzymes, including the cytochromes P450 (P450 or CYP; EC 1.14.14.1), need to be examined. In the present study, novel CYP4A cDNAs were isolated and characterized, namely, pig CYP4A23 and CYP4A90; cat CYP4A37 and CYP4A106; and tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g. For comparison, the following known CYP4A cDNAs were also analyzed: pig CYP4A21 and dog CYP4A37, CYP4A38, and CYP4A39. These CYP4A cDNAs all contained open reading frames of 504-513 amino acids and had high amino acid sequence identity (74%-80%) with human CYP4As. Phylogenetic analysis of amino acid sequences revealed that these CYP4As were clustered in each species. All <i>CYP4A</i> genes contained 12 coding exons and formed a gene cluster in the corresponding genomic regions. A range of tissue types were analyzed, and these CYP4A mRNAs were preferentially expressed in liver and/or kidney, except for pig CYP4A90, which showed preferential expression in lung and duodenum. CYP4A enzymes, heterologously expressed in <i>Escherichia coli</i>, preferentially catalyzed lauric acid 12-hydroxylation and arachidonic acid 20-hydroxylation, just as human CYP4A11 does, with the same regioselectivity (i.e., at the <i>ω</i>-position of fatty acids). These results imply that dog, cat, pig, and tree shrew CYP4As have functional characteristics similar to those of human CYP4A11, with minor differences in lauric acid 12-hydroxylation. SIGNIFICANCE STATEMENT: Cytochrome P450 (P450, CYP) 4As are important P450s in human biological processes because of their fatty acid-metabolizing ability. Pig CYP4A21, CYP4A23, and CYP4A90; cat CYP4A37 and CYP4A106; tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g; and dog CYP4A37, CYP4A38, and CYP4A39 cDNAs were isolated and analyzed. These CYP4A cDNAs shared relatively high sequence identities with human CYP4A11 and CYP4A22. Pig, cat, tree shrew, and dog CYP4As in the liver and kidneys are likely to catalyze the <i>ω</i>-hydroxylation of fatty acids.</p>\",\"PeriodicalId\":11309,\"journal\":{\"name\":\"Drug Metabolism and Disposition\",\"volume\":\" \",\"pages\":\"1009-1019\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Metabolism and Disposition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/dmd.124.001780\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.124.001780","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

临床前药物代谢研究中有时会用到猪,这引起了越来越多的兴趣,因此需要对猪的药物代谢酶,包括细胞色素 P450(P450 或 CYP;EC 1.14.14.1)进行检测。本研究分离并鉴定了新型 CYP4A cDNA,即猪 CYP4A23 和 CYP4A90;猫 CYP4A37 和 CYP4A106;树鼩 CYP4A11a、CYP4A11d、CYP4A11e、CYP4A11f 和 CYP4A11g。为了进行比较,还分析了以下已知的 CYP4A cDNA:猪 CYP4A21 和狗 CYP4A37、CYP4A38 和 CYP4A39。这些 CYP4A cDNA 均含有 504-513 个氨基酸的开放阅读框,与人类 CYP4A 的氨基酸序列具有很高的一致性(74-80%)。氨基酸序列的系统进化分析表明,这些 CYP4A 在每个物种中都有聚类。所有 CYP4A 基因都包含 12 个编码外显子,并在相应的基因组区域形成一个基因簇。对一系列组织类型进行了分析,这些 CYP4A mRNA 主要在肝脏和/或肾脏中表达,只有猪 CYP4A90 除外,主要在肺和十二指肠中表达。在大肠杆菌中异源表达的 CYP4A 酶优先催化月桂酸 12- 羟基化和花生四烯酸 20- 羟基化,就像人类的 CYP4A11 一样,具有相同的区域选择性,即脂肪酸的 ω 位。这些结果表明,狗、猫、猪和树鼩的 CYP4A 具有与人类 CYP4A11 相似的功能特征,只是在月桂酸 12- 羟基化方面略有不同。意义声明 细胞色素 P450(P450,CYP)4As 是人类生物过程中重要的 P450,因为它们具有脂肪酸代谢能力。我们分离并分析了猪 CYP4A21、CYP4A23 和 CYP4A90;猫 CYP4A37 和 CYP4A106;树鼩 CYP4A11a、CYP4A11d、CYP4A11e、CYP4A11f 和 CYP4A11g;以及狗 CYP4A37、CYP4A38 和 CYP4A39 cDNA。这些 CYP4A cDNA 与人类 CYP4A11 和 CYP4A22 的序列相同度相对较高。猪、猫、树鼩和狗肝脏和肾脏中的 CYP4A 可能催化脂肪酸的ω-羟基化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Functional Cytochrome P450 4A Enzymes in Liver and Kidney of Pigs, Cats, Tree Shrews, and Dogs in Comparison with the Metabolic Capacity of Human P450 4A11.

Pigs are sometimes used in preclinical drug metabolism studies, with growing interest, and thus their drug-metabolizing enzymes, including the cytochromes P450 (P450 or CYP; EC 1.14.14.1), need to be examined. In the present study, novel CYP4A cDNAs were isolated and characterized, namely, pig CYP4A23 and CYP4A90; cat CYP4A37 and CYP4A106; and tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g. For comparison, the following known CYP4A cDNAs were also analyzed: pig CYP4A21 and dog CYP4A37, CYP4A38, and CYP4A39. These CYP4A cDNAs all contained open reading frames of 504-513 amino acids and had high amino acid sequence identity (74%-80%) with human CYP4As. Phylogenetic analysis of amino acid sequences revealed that these CYP4As were clustered in each species. All CYP4A genes contained 12 coding exons and formed a gene cluster in the corresponding genomic regions. A range of tissue types were analyzed, and these CYP4A mRNAs were preferentially expressed in liver and/or kidney, except for pig CYP4A90, which showed preferential expression in lung and duodenum. CYP4A enzymes, heterologously expressed in Escherichia coli, preferentially catalyzed lauric acid 12-hydroxylation and arachidonic acid 20-hydroxylation, just as human CYP4A11 does, with the same regioselectivity (i.e., at the ω-position of fatty acids). These results imply that dog, cat, pig, and tree shrew CYP4As have functional characteristics similar to those of human CYP4A11, with minor differences in lauric acid 12-hydroxylation. SIGNIFICANCE STATEMENT: Cytochrome P450 (P450, CYP) 4As are important P450s in human biological processes because of their fatty acid-metabolizing ability. Pig CYP4A21, CYP4A23, and CYP4A90; cat CYP4A37 and CYP4A106; tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g; and dog CYP4A37, CYP4A38, and CYP4A39 cDNAs were isolated and analyzed. These CYP4A cDNAs shared relatively high sequence identities with human CYP4A11 and CYP4A22. Pig, cat, tree shrew, and dog CYP4As in the liver and kidneys are likely to catalyze the ω-hydroxylation of fatty acids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
12.80%
发文量
128
审稿时长
3 months
期刊介绍: An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信