原位构建用于可见光光催化铀还原的 2D/2D SnS2/MXene 异质结

IF 4.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Jianqiang Luo , Hao Xiong , Hongxia Jiang , Jiaqi Li , Chen Meng , Shujuan Liu , Jianguo Ma
{"title":"原位构建用于可见光光催化铀还原的 2D/2D SnS2/MXene 异质结","authors":"Jianqiang Luo ,&nbsp;Hao Xiong ,&nbsp;Hongxia Jiang ,&nbsp;Jiaqi Li ,&nbsp;Chen Meng ,&nbsp;Shujuan Liu ,&nbsp;Jianguo Ma","doi":"10.1039/d4cy00348a","DOIUrl":null,"url":null,"abstract":"<div><p>The photocatalytic reduction of soluble U(<span>vi</span>) into insoluble species presents a promising technique for removing radioactive uranium species from solution. The critical aspect in this field lies in the development of high-performance photocatalysts. Herein, a MXene (Ti<sub>3</sub>C<sub>2</sub>) and 2D SnS<sub>2</sub> nanosheet composite is synthesized by a one-step hydrothermal method. The as-synthesized SnS<sub>2</sub>/MXene heterostructure can reduce 93% of U(<span>vi</span>) under visible light irradiation in 200 min, which is 25% higher than pure SnS<sub>2</sub>. In addition, SnS<sub>2</sub>/MXene exhibited high stability and can endure more than 6 photocatalytic cycles, with the removal ratio of U(<span>vi</span>) remaining above 84%. Based on XPS, UV-vis, and PL analyses, the construction of a SnS<sub>2</sub>/MXene heterojunction not only improves the adsorption capability of visible light but also augments the efficiency of charge separation and transport. Additionally, DFT calculations further corroborate this enhancement mechanism by elucidating the formation of a built-in electric field between SnS<sub>2</sub> and MXene slabs.</p></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 13","pages":"Pages 3748-3755"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ construction of a 2D/2D SnS2/MXene heterojunction for visible-light photocatalytic uranium reduction\",\"authors\":\"Jianqiang Luo ,&nbsp;Hao Xiong ,&nbsp;Hongxia Jiang ,&nbsp;Jiaqi Li ,&nbsp;Chen Meng ,&nbsp;Shujuan Liu ,&nbsp;Jianguo Ma\",\"doi\":\"10.1039/d4cy00348a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The photocatalytic reduction of soluble U(<span>vi</span>) into insoluble species presents a promising technique for removing radioactive uranium species from solution. The critical aspect in this field lies in the development of high-performance photocatalysts. Herein, a MXene (Ti<sub>3</sub>C<sub>2</sub>) and 2D SnS<sub>2</sub> nanosheet composite is synthesized by a one-step hydrothermal method. The as-synthesized SnS<sub>2</sub>/MXene heterostructure can reduce 93% of U(<span>vi</span>) under visible light irradiation in 200 min, which is 25% higher than pure SnS<sub>2</sub>. In addition, SnS<sub>2</sub>/MXene exhibited high stability and can endure more than 6 photocatalytic cycles, with the removal ratio of U(<span>vi</span>) remaining above 84%. Based on XPS, UV-vis, and PL analyses, the construction of a SnS<sub>2</sub>/MXene heterojunction not only improves the adsorption capability of visible light but also augments the efficiency of charge separation and transport. Additionally, DFT calculations further corroborate this enhancement mechanism by elucidating the formation of a built-in electric field between SnS<sub>2</sub> and MXene slabs.</p></div>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\"14 13\",\"pages\":\"Pages 3748-3755\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475324003265\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324003265","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过光催化将可溶性铀(VI)还原成不溶性物质,是去除溶液中放射性铀物质的一项前景广阔的技术。这一领域的关键在于开发高性能的光催化剂。本文采用一步水热法合成了一种 MXene(Ti3C2)和二维 SnS2 纳米片复合材料。合成的 SnS2/MXene 异质结构在可见光辐照下 200 分钟内可还原 93% 的 U(VI),比纯 SnS2 高 25%。此外,SnS2/MXene 还表现出很高的稳定性,可以经受 6 次以上的光催化循环,对 U(VI) 的去除率保持在 84% 以上。根据 XPS、UV-vis 和 PL 分析,SnS2/MXene 异质结的构建不仅提高了对可见光的吸附能力,还提高了电荷分离和传输效率。此外,通过阐明在 SnS2 和 MXene 薄片之间形成的内置电场,DFT 计算进一步证实了这种增强机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In situ construction of a 2D/2D SnS2/MXene heterojunction for visible-light photocatalytic uranium reduction

In situ construction of a 2D/2D SnS2/MXene heterojunction for visible-light photocatalytic uranium reduction

The photocatalytic reduction of soluble U(vi) into insoluble species presents a promising technique for removing radioactive uranium species from solution. The critical aspect in this field lies in the development of high-performance photocatalysts. Herein, a MXene (Ti3C2) and 2D SnS2 nanosheet composite is synthesized by a one-step hydrothermal method. The as-synthesized SnS2/MXene heterostructure can reduce 93% of U(vi) under visible light irradiation in 200 min, which is 25% higher than pure SnS2. In addition, SnS2/MXene exhibited high stability and can endure more than 6 photocatalytic cycles, with the removal ratio of U(vi) remaining above 84%. Based on XPS, UV-vis, and PL analyses, the construction of a SnS2/MXene heterojunction not only improves the adsorption capability of visible light but also augments the efficiency of charge separation and transport. Additionally, DFT calculations further corroborate this enhancement mechanism by elucidating the formation of a built-in electric field between SnS2 and MXene slabs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信