跨物种时程转录组学揭示了重复服用环孢素 A 所诱导的肝脏毒性途径的一致性。

IF 3.2 4区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics
Toxicology Mechanisms and Methods Pub Date : 2024-11-01 Epub Date: 2024-06-27 DOI:10.1080/15376516.2024.2371894
Nguyen Tran Nam Tien, Trinh Tam Anh, Nguyen Thi Hai Yen, Nguyen Ky Anh, Huy Truong Nguyen, Ho-Sook Kim, Jung-Hwa Oh, Dong-Hyun Kim, Nguyen Phuoc Long
{"title":"跨物种时程转录组学揭示了重复服用环孢素 A 所诱导的肝脏毒性途径的一致性。","authors":"Nguyen Tran Nam Tien, Trinh Tam Anh, Nguyen Thi Hai Yen, Nguyen Ky Anh, Huy Truong Nguyen, Ho-Sook Kim, Jung-Hwa Oh, Dong-Hyun Kim, Nguyen Phuoc Long","doi":"10.1080/15376516.2024.2371894","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclosporine A (CsA) has shown efficacy against immunity-related diseases despite its toxicity in various organs, including the liver, emphasizing the need to elucidate its underlying hepatotoxicity mechanism. This study aimed to capture the alterations in genome-wide expression over time and the subsequent perturbations of corresponding pathways across species. Six data from humans, mice, and rats, including animal liver tissue, human liver microtissues, and two liver cell lines exposed to CsA toxic dose, were used. The microtissue exposed to CsA for 10 d was analyzed to obtain dynamically differentially expressed genes (DEGs). Single-time points data at 1, 3, 5, 7, and 28 d of different species were used to provide additional evidence. Using liver microtissue-based longitudinal design, DEGs that were consistently up- or down-regulated over time were captured, and the well-known mechanism involved in CsA toxicity was elucidated. Thirty DEGs that consistently changed in longitudinal data were also altered in 28-d rat in-house data with concordant expression. Some genes (e.g. <i>TUBB2A</i>, <i>PLIN2</i>, <i>APOB</i>) showed good concordance with identified DEGs in 1-d and 7-d mouse data. Pathway analysis revealed up-regulations of protein processing, asparagine N-linked glycosylation, and cargo concentration in the endoplasmic reticulum. Furthermore, the down-regulations of pathways related to biological oxidations and metabolite and lipid metabolism were elucidated. These pathways were also enriched in single-time-point data and conserved across species, implying their biological significance and generalizability. Overall, the human organoids-based longitudinal design coupled with cross-species validation provides temporal molecular change tracking, aiding mechanistic elucidation and biologically relevant biomarker discovery.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"1010-1021"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-course cross-species transcriptomics reveals conserved hepatotoxicity pathways induced by repeated administration of cyclosporine A.\",\"authors\":\"Nguyen Tran Nam Tien, Trinh Tam Anh, Nguyen Thi Hai Yen, Nguyen Ky Anh, Huy Truong Nguyen, Ho-Sook Kim, Jung-Hwa Oh, Dong-Hyun Kim, Nguyen Phuoc Long\",\"doi\":\"10.1080/15376516.2024.2371894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyclosporine A (CsA) has shown efficacy against immunity-related diseases despite its toxicity in various organs, including the liver, emphasizing the need to elucidate its underlying hepatotoxicity mechanism. This study aimed to capture the alterations in genome-wide expression over time and the subsequent perturbations of corresponding pathways across species. Six data from humans, mice, and rats, including animal liver tissue, human liver microtissues, and two liver cell lines exposed to CsA toxic dose, were used. The microtissue exposed to CsA for 10 d was analyzed to obtain dynamically differentially expressed genes (DEGs). Single-time points data at 1, 3, 5, 7, and 28 d of different species were used to provide additional evidence. Using liver microtissue-based longitudinal design, DEGs that were consistently up- or down-regulated over time were captured, and the well-known mechanism involved in CsA toxicity was elucidated. Thirty DEGs that consistently changed in longitudinal data were also altered in 28-d rat in-house data with concordant expression. Some genes (e.g. <i>TUBB2A</i>, <i>PLIN2</i>, <i>APOB</i>) showed good concordance with identified DEGs in 1-d and 7-d mouse data. Pathway analysis revealed up-regulations of protein processing, asparagine N-linked glycosylation, and cargo concentration in the endoplasmic reticulum. Furthermore, the down-regulations of pathways related to biological oxidations and metabolite and lipid metabolism were elucidated. These pathways were also enriched in single-time-point data and conserved across species, implying their biological significance and generalizability. Overall, the human organoids-based longitudinal design coupled with cross-species validation provides temporal molecular change tracking, aiding mechanistic elucidation and biologically relevant biomarker discovery.</p>\",\"PeriodicalId\":23177,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":\" \",\"pages\":\"1010-1021\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2024.2371894\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2024.2371894","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

尽管环孢素 A(CsA)对包括肝脏在内的多个器官有毒性,但它对免疫相关疾病仍有疗效,这就强调了阐明其潜在肝毒性机制的必要性。本研究旨在捕捉不同物种全基因组表达随时间的变化以及相应通路随之发生的扰动。本研究使用了来自人类、小鼠和大鼠的六种数据,包括动物肝脏组织、人类肝脏微组织和两种暴露于 CsA 毒性剂量的肝细胞系。对暴露于 CsA 10 d 的微组织进行分析,以获得动态差异表达基因(DEGs)。此外,还使用了不同物种在 1、3、5、7 和 28 d 的单时间点数据,以提供更多证据。利用基于肝脏微组织的纵向设计,捕获了随时间持续上调或下调的 DEGs,并阐明了众所周知的 CsA 毒性机制。纵向数据中持续变化的 30 个 DEGs 在 28 天大鼠体内数据中也有一致的表达变化。一些基因(如 TUBB2A、PLIN2、APOB)与小鼠 1 天和 7 天数据中确定的 DEGs 表现出很好的一致性。通路分析显示,蛋白质加工、天冬酰胺-N-连接糖基化和内质网中的货物浓度出现上调。此外,还阐明了与生物氧化以及代谢物和脂质代谢相关的通路的下调。这些通路在单个时间点数据中也有所富集,并且在不同物种间保持一致,这意味着它们具有生物学意义和普遍性。总之,基于人体有机体的纵向设计和跨物种验证提供了时间分子变化跟踪,有助于机理阐明和生物相关生物标志物的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-course cross-species transcriptomics reveals conserved hepatotoxicity pathways induced by repeated administration of cyclosporine A.

Cyclosporine A (CsA) has shown efficacy against immunity-related diseases despite its toxicity in various organs, including the liver, emphasizing the need to elucidate its underlying hepatotoxicity mechanism. This study aimed to capture the alterations in genome-wide expression over time and the subsequent perturbations of corresponding pathways across species. Six data from humans, mice, and rats, including animal liver tissue, human liver microtissues, and two liver cell lines exposed to CsA toxic dose, were used. The microtissue exposed to CsA for 10 d was analyzed to obtain dynamically differentially expressed genes (DEGs). Single-time points data at 1, 3, 5, 7, and 28 d of different species were used to provide additional evidence. Using liver microtissue-based longitudinal design, DEGs that were consistently up- or down-regulated over time were captured, and the well-known mechanism involved in CsA toxicity was elucidated. Thirty DEGs that consistently changed in longitudinal data were also altered in 28-d rat in-house data with concordant expression. Some genes (e.g. TUBB2A, PLIN2, APOB) showed good concordance with identified DEGs in 1-d and 7-d mouse data. Pathway analysis revealed up-regulations of protein processing, asparagine N-linked glycosylation, and cargo concentration in the endoplasmic reticulum. Furthermore, the down-regulations of pathways related to biological oxidations and metabolite and lipid metabolism were elucidated. These pathways were also enriched in single-time-point data and conserved across species, implying their biological significance and generalizability. Overall, the human organoids-based longitudinal design coupled with cross-species validation provides temporal molecular change tracking, aiding mechanistic elucidation and biologically relevant biomarker discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.10%
发文量
66
审稿时长
6-12 weeks
期刊介绍: Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy. Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including: In vivo studies with standard and alternative species In vitro studies and alternative methodologies Molecular, biochemical, and cellular techniques Pharmacokinetics and pharmacodynamics Mathematical modeling and computer programs Forensic analyses Risk assessment Data collection and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信