Aman Kumar Singh, Subramanian Ramakrishnan, Manish Kumar
{"title":"非线性和噪声驱动的时空流行动力学中的不稳定性和自组织。","authors":"Aman Kumar Singh, Subramanian Ramakrishnan, Manish Kumar","doi":"10.1088/1478-3975/ad5d6a","DOIUrl":null,"url":null,"abstract":"<p><p>Theoretical analysis of epidemic dynamics has attracted significant attention in the aftermath of the COVID-19 pandemic. In this article, we study dynamic instabilities in a spatiotemporal compartmental epidemic model represented by a stochastic system of coupled partial differential equations (SPDE). Saturation effects in infection spread-anchored in physical considerations-lead to strong nonlinearities in the SPDE. Our goal is to study the onset of dynamic, Turing-type instabilities, and the concomitant emergence of steady-state patterns under the interplay between three critical model parameters-the saturation parameter, the noise intensity, and the transmission rate. Employing a second-order perturbation analysis to investigate stability, we uncover both diffusion-driven and noise-induced instabilities and corresponding self-organized distinct patterns of infection spread in the steady state. We also analyze the effects of the saturation parameter and the transmission rate on the instabilities and the pattern formation. In summary, our results indicate that the nuanced interplay between the three parameters considered has a profound effect on the emergence of dynamical instabilities and therefore on pattern formation in the steady state. Moreover, due to the central role played by the Turing phenomenon in pattern formation in a variety of biological dynamic systems, the results are expected to have broader significance beyond epidemic dynamics.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instabilities and self-organization in spatiotemporal epidemic dynamics driven by nonlinearity and noise.\",\"authors\":\"Aman Kumar Singh, Subramanian Ramakrishnan, Manish Kumar\",\"doi\":\"10.1088/1478-3975/ad5d6a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Theoretical analysis of epidemic dynamics has attracted significant attention in the aftermath of the COVID-19 pandemic. In this article, we study dynamic instabilities in a spatiotemporal compartmental epidemic model represented by a stochastic system of coupled partial differential equations (SPDE). Saturation effects in infection spread-anchored in physical considerations-lead to strong nonlinearities in the SPDE. Our goal is to study the onset of dynamic, Turing-type instabilities, and the concomitant emergence of steady-state patterns under the interplay between three critical model parameters-the saturation parameter, the noise intensity, and the transmission rate. Employing a second-order perturbation analysis to investigate stability, we uncover both diffusion-driven and noise-induced instabilities and corresponding self-organized distinct patterns of infection spread in the steady state. We also analyze the effects of the saturation parameter and the transmission rate on the instabilities and the pattern formation. In summary, our results indicate that the nuanced interplay between the three parameters considered has a profound effect on the emergence of dynamical instabilities and therefore on pattern formation in the steady state. Moreover, due to the central role played by the Turing phenomenon in pattern formation in a variety of biological dynamic systems, the results are expected to have broader significance beyond epidemic dynamics.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/ad5d6a\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ad5d6a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Instabilities and self-organization in spatiotemporal epidemic dynamics driven by nonlinearity and noise.
Theoretical analysis of epidemic dynamics has attracted significant attention in the aftermath of the COVID-19 pandemic. In this article, we study dynamic instabilities in a spatiotemporal compartmental epidemic model represented by a stochastic system of coupled partial differential equations (SPDE). Saturation effects in infection spread-anchored in physical considerations-lead to strong nonlinearities in the SPDE. Our goal is to study the onset of dynamic, Turing-type instabilities, and the concomitant emergence of steady-state patterns under the interplay between three critical model parameters-the saturation parameter, the noise intensity, and the transmission rate. Employing a second-order perturbation analysis to investigate stability, we uncover both diffusion-driven and noise-induced instabilities and corresponding self-organized distinct patterns of infection spread in the steady state. We also analyze the effects of the saturation parameter and the transmission rate on the instabilities and the pattern formation. In summary, our results indicate that the nuanced interplay between the three parameters considered has a profound effect on the emergence of dynamical instabilities and therefore on pattern formation in the steady state. Moreover, due to the central role played by the Turing phenomenon in pattern formation in a variety of biological dynamic systems, the results are expected to have broader significance beyond epidemic dynamics.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.