Brian D. Chen, Chanhwa Lee, Amanda L. Tapia, Alexander P. Reiner, Hua Tang, Charles Kooperberg, JoAnn E. Manson, Yun Li, Laura M. Raffield
{"title":"利用顺式和反式变异进行全蛋白质组关联研究,并将其应用于妇女健康倡议研究中的血细胞和血脂相关特征。","authors":"Brian D. Chen, Chanhwa Lee, Amanda L. Tapia, Alexander P. Reiner, Hua Tang, Charles Kooperberg, JoAnn E. Manson, Yun Li, Laura M. Raffield","doi":"10.1002/gepi.22578","DOIUrl":null,"url":null,"abstract":"<p>In most Proteome-Wide Association Studies (PWAS), variants near the protein-coding gene (±1 Mb), also known as <i>cis</i> single nucleotide polymorphisms (SNPs), are used to predict protein levels, which are then tested for association with phenotypes. However, proteins can be regulated through variants outside of the cis region. An intermediate GWAS step to identify protein quantitative trait loci (pQTL) allows for the inclusion of trans SNPs outside the cis region in protein-level prediction models. Here, we assess the prediction of 540 proteins in 1002 individuals from the Women's Health Initiative (WHI), split equally into a GWAS set, an elastic net training set, and a testing set. We compared the testing <i>r</i><sup>2</sup> between measured and predicted protein levels using this proposed approach, to the testing <i>r</i><sup>2</sup> using only cis SNPs. The two methods usually resulted in similar testing <i>r</i><sup>2</sup>, but some proteins showed a significant increase in testing <i>r</i><sup>2</sup> with our method. For example, for cartilage acidic protein 1, the testing <i>r</i><sup>2</sup> increased from 0.101 to 0.351. We also demonstrate reproducible findings for predicted protein association with lipid and blood cell traits in WHI participants without proteomics data and in UK Biobank utilizing our PWAS weights.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"48 7","pages":"310-323"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteome-wide association study using cis and trans variants and applied to blood cell and lipid-related traits in the Women's Health Initiative study\",\"authors\":\"Brian D. Chen, Chanhwa Lee, Amanda L. Tapia, Alexander P. Reiner, Hua Tang, Charles Kooperberg, JoAnn E. Manson, Yun Li, Laura M. Raffield\",\"doi\":\"10.1002/gepi.22578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In most Proteome-Wide Association Studies (PWAS), variants near the protein-coding gene (±1 Mb), also known as <i>cis</i> single nucleotide polymorphisms (SNPs), are used to predict protein levels, which are then tested for association with phenotypes. However, proteins can be regulated through variants outside of the cis region. An intermediate GWAS step to identify protein quantitative trait loci (pQTL) allows for the inclusion of trans SNPs outside the cis region in protein-level prediction models. Here, we assess the prediction of 540 proteins in 1002 individuals from the Women's Health Initiative (WHI), split equally into a GWAS set, an elastic net training set, and a testing set. We compared the testing <i>r</i><sup>2</sup> between measured and predicted protein levels using this proposed approach, to the testing <i>r</i><sup>2</sup> using only cis SNPs. The two methods usually resulted in similar testing <i>r</i><sup>2</sup>, but some proteins showed a significant increase in testing <i>r</i><sup>2</sup> with our method. For example, for cartilage acidic protein 1, the testing <i>r</i><sup>2</sup> increased from 0.101 to 0.351. We also demonstrate reproducible findings for predicted protein association with lipid and blood cell traits in WHI participants without proteomics data and in UK Biobank utilizing our PWAS weights.</p>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"48 7\",\"pages\":\"310-323\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22578\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22578","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Proteome-wide association study using cis and trans variants and applied to blood cell and lipid-related traits in the Women's Health Initiative study
In most Proteome-Wide Association Studies (PWAS), variants near the protein-coding gene (±1 Mb), also known as cis single nucleotide polymorphisms (SNPs), are used to predict protein levels, which are then tested for association with phenotypes. However, proteins can be regulated through variants outside of the cis region. An intermediate GWAS step to identify protein quantitative trait loci (pQTL) allows for the inclusion of trans SNPs outside the cis region in protein-level prediction models. Here, we assess the prediction of 540 proteins in 1002 individuals from the Women's Health Initiative (WHI), split equally into a GWAS set, an elastic net training set, and a testing set. We compared the testing r2 between measured and predicted protein levels using this proposed approach, to the testing r2 using only cis SNPs. The two methods usually resulted in similar testing r2, but some proteins showed a significant increase in testing r2 with our method. For example, for cartilage acidic protein 1, the testing r2 increased from 0.101 to 0.351. We also demonstrate reproducible findings for predicted protein association with lipid and blood cell traits in WHI participants without proteomics data and in UK Biobank utilizing our PWAS weights.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.