{"title":"揭示西双版纳杓兰耐盐性所依赖的植物激素信号通路:转录组学和代谢组学方法","authors":"Ying De, Weihong Yan, Fengqin Gao, Huaibin Mu","doi":"10.1016/j.ygeno.2024.110893","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding phytohormonal signaling is crucial for elucidating plant defense mechanisms against environmental stressors. However, knowledge regarding phytohormone-mediated tolerance pathways under salt stress in <em>Elymus sibiricus</em>, an important species for forage and ecological restoration, remains limited. In this study, transcriptomic and metabolomic approaches uncover the dynamics of phytohormonal signaling in <em>Elymus sibiricus</em> under salt stress. Notably, four hours after exposure to salt, significant activity was observed in the ABA, JA, IAA, and CTK pathways, with ABA, JA, JA-L-Ile, and IAA identified as key mediators in the response of <em>Elymus sibiricus</em>' to salinity. Moreover, SAPK3, Os04g0167900-like, CAT1, MKK2, and MPK12 were identified as potential central regulators within these pathways. The complex interactions between phytohormones and DEGs are crucial for facilitating the adaptation of <em>Elymus sibiricus</em> to saline environments. These findings enhance our understanding of the salt tolerance mechanisms in <em>Elymus sibiricus</em> and provide a foundation for breeding salt-resistant varieties.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001149/pdfft?md5=deff24d321fb2fa39c0599eb1753062c&pid=1-s2.0-S0888754324001149-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unraveling the signaling pathways of phytohormones underlying salt tolerance in Elymus sibiricus: A transcriptomic and metabolomic approach\",\"authors\":\"Ying De, Weihong Yan, Fengqin Gao, Huaibin Mu\",\"doi\":\"10.1016/j.ygeno.2024.110893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding phytohormonal signaling is crucial for elucidating plant defense mechanisms against environmental stressors. However, knowledge regarding phytohormone-mediated tolerance pathways under salt stress in <em>Elymus sibiricus</em>, an important species for forage and ecological restoration, remains limited. In this study, transcriptomic and metabolomic approaches uncover the dynamics of phytohormonal signaling in <em>Elymus sibiricus</em> under salt stress. Notably, four hours after exposure to salt, significant activity was observed in the ABA, JA, IAA, and CTK pathways, with ABA, JA, JA-L-Ile, and IAA identified as key mediators in the response of <em>Elymus sibiricus</em>' to salinity. Moreover, SAPK3, Os04g0167900-like, CAT1, MKK2, and MPK12 were identified as potential central regulators within these pathways. The complex interactions between phytohormones and DEGs are crucial for facilitating the adaptation of <em>Elymus sibiricus</em> to saline environments. These findings enhance our understanding of the salt tolerance mechanisms in <em>Elymus sibiricus</em> and provide a foundation for breeding salt-resistant varieties.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0888754324001149/pdfft?md5=deff24d321fb2fa39c0599eb1753062c&pid=1-s2.0-S0888754324001149-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888754324001149\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324001149","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Unraveling the signaling pathways of phytohormones underlying salt tolerance in Elymus sibiricus: A transcriptomic and metabolomic approach
Understanding phytohormonal signaling is crucial for elucidating plant defense mechanisms against environmental stressors. However, knowledge regarding phytohormone-mediated tolerance pathways under salt stress in Elymus sibiricus, an important species for forage and ecological restoration, remains limited. In this study, transcriptomic and metabolomic approaches uncover the dynamics of phytohormonal signaling in Elymus sibiricus under salt stress. Notably, four hours after exposure to salt, significant activity was observed in the ABA, JA, IAA, and CTK pathways, with ABA, JA, JA-L-Ile, and IAA identified as key mediators in the response of Elymus sibiricus' to salinity. Moreover, SAPK3, Os04g0167900-like, CAT1, MKK2, and MPK12 were identified as potential central regulators within these pathways. The complex interactions between phytohormones and DEGs are crucial for facilitating the adaptation of Elymus sibiricus to saline environments. These findings enhance our understanding of the salt tolerance mechanisms in Elymus sibiricus and provide a foundation for breeding salt-resistant varieties.