Inha Jung, Seungyoon Nam, Da Young Lee, So Young Park, Ji Hee Yu, Ji A Seo, Dae Ho Lee, Nan Hee Kim
{"title":"琥珀酸和腺苷核苷酸代谢途径与 2 型糖尿病患者糖尿病肾病的关系","authors":"Inha Jung, Seungyoon Nam, Da Young Lee, So Young Park, Ji Hee Yu, Ji A Seo, Dae Ho Lee, Nan Hee Kim","doi":"10.4093/dmj.2023.0377","DOIUrl":null,"url":null,"abstract":"<p><strong>Backgruound: </strong>Although the prevalence of diabetic kidney disease (DKD) is increasing, reliable biomarkers for its early detection are scarce. This study aimed to evaluate the association of adenosine and succinate levels and their related pathways, including hyaluronic acid (HA) synthesis, with DKD.</p><p><strong>Methods: </strong>We examined 235 participants and categorized them into three groups: healthy controls; those with diabetes but without DKD; and those with DKD, which was defined as estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. We compared the concentrations of urinary adenosine, succinate, and HA and the serum levels of cluster of differentiation 39 (CD39) and CD73, which are involved in adenosine generation, among the groups with DKD or albuminuria. In addition, we performed multiple logistic regression analysis to evaluate the independent association of DKD or albuminuria with the metabolites after adjusting for risk factors. We also showed the association of these metabolites with eGFR measured several years before enrollment. This study was registered with the Clinical Research Information Service (https://cris.nih.go.kr; Registration number: KCT0003573).</p><p><strong>Results: </strong>Urinary succinate and serum CD39 levels were higher in the DKD group than in the control and non-DKD groups. Correlation analysis consistently linked urinary succinate and serum CD39 concentrations with eGFR, albuminuria, and ΔeGFR, which was calculated retrospectively. However, among the various metabolites studied, only urinary succinate was identified as an independent indicator of DKD and albuminuria.</p><p><strong>Conclusion: </strong>Among several potential metabolites, only urinary succinate was independently associated with DKD. These findings hold promise for clinical application in the management of DKD.</p>","PeriodicalId":11153,"journal":{"name":"Diabetes & Metabolism Journal","volume":" ","pages":"1126-1134"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621657/pdf/","citationCount":"0","resultStr":"{\"title\":\"Association of Succinate and Adenosine Nucleotide Metabolic Pathways with Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus.\",\"authors\":\"Inha Jung, Seungyoon Nam, Da Young Lee, So Young Park, Ji Hee Yu, Ji A Seo, Dae Ho Lee, Nan Hee Kim\",\"doi\":\"10.4093/dmj.2023.0377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Backgruound: </strong>Although the prevalence of diabetic kidney disease (DKD) is increasing, reliable biomarkers for its early detection are scarce. This study aimed to evaluate the association of adenosine and succinate levels and their related pathways, including hyaluronic acid (HA) synthesis, with DKD.</p><p><strong>Methods: </strong>We examined 235 participants and categorized them into three groups: healthy controls; those with diabetes but without DKD; and those with DKD, which was defined as estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. We compared the concentrations of urinary adenosine, succinate, and HA and the serum levels of cluster of differentiation 39 (CD39) and CD73, which are involved in adenosine generation, among the groups with DKD or albuminuria. In addition, we performed multiple logistic regression analysis to evaluate the independent association of DKD or albuminuria with the metabolites after adjusting for risk factors. We also showed the association of these metabolites with eGFR measured several years before enrollment. This study was registered with the Clinical Research Information Service (https://cris.nih.go.kr; Registration number: KCT0003573).</p><p><strong>Results: </strong>Urinary succinate and serum CD39 levels were higher in the DKD group than in the control and non-DKD groups. Correlation analysis consistently linked urinary succinate and serum CD39 concentrations with eGFR, albuminuria, and ΔeGFR, which was calculated retrospectively. However, among the various metabolites studied, only urinary succinate was identified as an independent indicator of DKD and albuminuria.</p><p><strong>Conclusion: </strong>Among several potential metabolites, only urinary succinate was independently associated with DKD. These findings hold promise for clinical application in the management of DKD.</p>\",\"PeriodicalId\":11153,\"journal\":{\"name\":\"Diabetes & Metabolism Journal\",\"volume\":\" \",\"pages\":\"1126-1134\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621657/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes & Metabolism Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4093/dmj.2023.0377\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes & Metabolism Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4093/dmj.2023.0377","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Association of Succinate and Adenosine Nucleotide Metabolic Pathways with Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus.
Backgruound: Although the prevalence of diabetic kidney disease (DKD) is increasing, reliable biomarkers for its early detection are scarce. This study aimed to evaluate the association of adenosine and succinate levels and their related pathways, including hyaluronic acid (HA) synthesis, with DKD.
Methods: We examined 235 participants and categorized them into three groups: healthy controls; those with diabetes but without DKD; and those with DKD, which was defined as estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. We compared the concentrations of urinary adenosine, succinate, and HA and the serum levels of cluster of differentiation 39 (CD39) and CD73, which are involved in adenosine generation, among the groups with DKD or albuminuria. In addition, we performed multiple logistic regression analysis to evaluate the independent association of DKD or albuminuria with the metabolites after adjusting for risk factors. We also showed the association of these metabolites with eGFR measured several years before enrollment. This study was registered with the Clinical Research Information Service (https://cris.nih.go.kr; Registration number: KCT0003573).
Results: Urinary succinate and serum CD39 levels were higher in the DKD group than in the control and non-DKD groups. Correlation analysis consistently linked urinary succinate and serum CD39 concentrations with eGFR, albuminuria, and ΔeGFR, which was calculated retrospectively. However, among the various metabolites studied, only urinary succinate was identified as an independent indicator of DKD and albuminuria.
Conclusion: Among several potential metabolites, only urinary succinate was independently associated with DKD. These findings hold promise for clinical application in the management of DKD.
期刊介绍:
The aims of the Diabetes & Metabolism Journal are to contribute to the cure of and education about diabetes mellitus, and the advancement of diabetology through the sharing of scientific information on the latest developments in diabetology among members of the Korean Diabetes Association and other international societies.
The Journal publishes articles on basic and clinical studies, focusing on areas such as metabolism, epidemiology, pathogenesis, complications, and treatments relevant to diabetes mellitus. It also publishes articles covering obesity and cardiovascular disease. Articles on translational research and timely issues including ubiquitous care or new technology in the management of diabetes and metabolic disorders are welcome. In addition, genome research, meta-analysis, and randomized controlled studies are welcome for publication.
The editorial board invites articles from international research or clinical study groups. Publication is determined by the editors and peer reviewers, who are experts in their specific fields of diabetology.