Xiao-Yan Song, Cun-Xiu Fan, Atta-Ur- Rahman, Muhammad Iqbal Choudhary, Xiao-Ping Wang
{"title":"神经再生或修复:细胞疗法治疗神经系统疾病的未来之路。","authors":"Xiao-Yan Song, Cun-Xiu Fan, Atta-Ur- Rahman, Muhammad Iqbal Choudhary, Xiao-Ping Wang","doi":"10.2174/1570159X22666240509092903","DOIUrl":null,"url":null,"abstract":"<p><p>The human central nervous system (CNS) has a limited capacity for regeneration and repair, as many other organs do. Partly as a result, neurological diseases are the leading cause of medical burden globally. Most neurological disorders cannot be cured, and primary treatments focus on managing their symptoms and slowing down their progression. Cell therapy for neurological disorders offers several therapeutic potentials and provides hope for many patients. Here we provide a general overview of cell therapy in neurological disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), stroke and traumatic brain injury (TBI), involving many forms of stem cells, including embryonic stem cells and induced pluripotent stem cells. We also address the current concerns and perspectives for the future. Most studies for cell therapy in neurological diseases are in the pre-clinical stage, and there is still a great need for further research to translate neural replacement and regenerative therapies into clinical settings.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451317/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neuro-regeneration or Repair: Cell Therapy of Neurological Disorders as A Way Forward.\",\"authors\":\"Xiao-Yan Song, Cun-Xiu Fan, Atta-Ur- Rahman, Muhammad Iqbal Choudhary, Xiao-Ping Wang\",\"doi\":\"10.2174/1570159X22666240509092903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human central nervous system (CNS) has a limited capacity for regeneration and repair, as many other organs do. Partly as a result, neurological diseases are the leading cause of medical burden globally. Most neurological disorders cannot be cured, and primary treatments focus on managing their symptoms and slowing down their progression. Cell therapy for neurological disorders offers several therapeutic potentials and provides hope for many patients. Here we provide a general overview of cell therapy in neurological disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), stroke and traumatic brain injury (TBI), involving many forms of stem cells, including embryonic stem cells and induced pluripotent stem cells. We also address the current concerns and perspectives for the future. Most studies for cell therapy in neurological diseases are in the pre-clinical stage, and there is still a great need for further research to translate neural replacement and regenerative therapies into clinical settings.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451317/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1570159X22666240509092903\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1570159X22666240509092903","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Neuro-regeneration or Repair: Cell Therapy of Neurological Disorders as A Way Forward.
The human central nervous system (CNS) has a limited capacity for regeneration and repair, as many other organs do. Partly as a result, neurological diseases are the leading cause of medical burden globally. Most neurological disorders cannot be cured, and primary treatments focus on managing their symptoms and slowing down their progression. Cell therapy for neurological disorders offers several therapeutic potentials and provides hope for many patients. Here we provide a general overview of cell therapy in neurological disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), stroke and traumatic brain injury (TBI), involving many forms of stem cells, including embryonic stem cells and induced pluripotent stem cells. We also address the current concerns and perspectives for the future. Most studies for cell therapy in neurological diseases are in the pre-clinical stage, and there is still a great need for further research to translate neural replacement and regenerative therapies into clinical settings.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.